pandas DataFrame applymap()函数】的更多相关文章

pandas DataFrame的 applymap() 函数可以对DataFrame里的每个值进行处理,然后返回一个新的DataFrame: import pandas as pd df = pd.DataFrame({ 'a': [1, 2, 3], 'b': [10, 20, 30], 'c': [5, 10, 15] }) def add_one(x): return x + 1 print df.applymap(add_one) a b c 0 2 11 6 1 3 21 11 2…
之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 applymap() 函数和pandas Series 的 apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象. 而pandas DataFrame 的  apply() 函数,虽然也是作用于DataFrame的每个值,但是接受的参数不是各个值本身,而是DataFrame里各行(…
上一篇pandas DataFrame apply()函数(1)说了如何通过apply函数对DataFrame进行转换,得到一个新的DataFrame. 这篇介绍DataFrame apply()函数的另一个用法,得到一个新的pandas Series: apply()中的函数接收的参数为一行(列),把一行(列)通过计算,返回一个值,最后返回一个Series: 下图展示了把DataFrame的各列转换成一个数,最后返回成一个Series: 举个栗子: import numpy as np imp…
pandas DataFrame.shift()函数可以把数据移动指定的位数 period参数指定移动的步幅,可以为正为负.axis指定移动的轴,1为行,0为列. eg: 有这样一个DataFrame数据: import pandas as pd data1 = pd.DataFrame({ 'a': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] }) print data1 a b 0 0 9 1 1 8…
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' >>文件: pandas作图.py >>作者: liu yang >>博客: liuyang1.club >>邮箱: liuyang0001@outlook.com >>博客: www.cnblogs.com/liu66blog ''''''''''…
pandas模块常用函数解析之DataFrame 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网址http://localhost:8888/ 一.导入模块 import numpy as np import pandas as pd from pandas import Series,DataFrame 二.DataFrame DataFrame是一个[表格型]的数据结构.DataFrame由按…
pandas目录 简介 如果想要应用自定义的函数,或者把其他库中的函数应用到 Pandas 对象中,有以下三种方法: 操作整个 DataFrame 的函数:pipe() 操作行或者列的函数:apply() 操作单一元素的函数:applymap() 下面介绍了三种方法的使用. 1 操作整个数据表 通过给 pipe() 函数传递一个自定义函数和适当数量的参数值,从而操作 DataFrme 中的所有元素. 下面示例,实现了数据表中的元素值依次加 3. df = pd.DataFrame(np.aran…
示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings import filterwarnings # 由于create table if not exists总会抛出warning,因此使用filterwarnings消除 filterwarnings('ignore', category = MySQLdb.Warning) from sqlalchemy i…
把pandas dataframe转为list方法 先用numpy的 array() 转为ndarray类型,再用tolist()函数转为list…
总括 pandas的索引函数主要有三种: loc 标签索引,行和列的名称 iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0 ix 是 iloc 和 loc的合体 at是loc的快捷方式 iat是iloc的快捷方式 建立测试数据集: import pandas as pd df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'],'c': ["A","B","C"]}) p…