在数据分析中有时候需要自己定义分组规则 这里简单介绍一下用一个字典实现分组 people=DataFrame( np.random.randn(5,5), columns=['a','b','c','d','e'], index=['Joe','Steve','Wes','Jim','Travis']) mapping={'a':'red','b':'red','c':'blue','d':'blue','e':'red','f':'orange'} by_column=people.group…
Python 数据分析中常用的可视化工具 1 Matplotlib 用于创建出版质量图表的绘图工具库,目的是为 Python 构建一个 Matlab 式的绘图接口. 1.1 安装 Anaconada 自带. pip 安装 pip install matplotlib 1.2 引用 import matplotlib.pyplot as plt 1.3 常用方法 figure Matplotlib 的图像均位于 figure 对象中 创建 figure fig = plt.figure() sub…
Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性,这里就为大家分享几个不错的数据分析工具,需要的朋友可以参考下 Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性.Python可用于数据分析,但其单纯依赖Python本身自带的库进行数据分析还是具有一定的局限性的,需要安装第三方扩展库来增强分析和挖掘能力. Python数据分析需要安装的第三…
1. 引言 最近在研究django rest_framework的源码,老是遇到super,搞得一团蒙,多番查看各路大神博客,总算明白了一点,今天做一点总结. 2. 为什么要用super 1)让代码维护更加简单 Python是一门面向对象的语言,定义类时经常用到继承的概念,既然用到继承就少不得要在子类中引用父类的属性,我们可以通过“父类名.属性名”的方式来调用,代码如下: class A: def fun(self): print('A.fun') class B(A): def fun(sel…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列? 直接上代码people=DataFrame(np.random.randn(5,5), columns=['a','b','c','d','e'], index=['Joe','Steve','Wes','Jim','Travis'])               a         b         c         d         eJoe     0.814300 -0.495764  0.3…
python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列? 直接上代码people=DataFrame(np.random.randn(5,5), columns=['a','b','c','d','e'], index=['Joe','Steve','Wes','Jim','Travis'])                a         b         c         d         eJoe     0.814300 -0.495764  0.…
目录 金融数据 pandas-datareader TuShare 金融学图表 案例 金融数据 数据分析离不开数据的获取,这里介绍几种常用的获取金融方面数据的方法. pandas-datareader pandas-datareader 库包含了全球最著名的几家公司所整理的金融数据,这些数据库包括: 雅虎财经 谷歌财经 圣路易斯储备银行 肯尼斯·弗伦其数据库 世界银行 安装 pip install -U pandas-datareader 使用 引入库:import pandas_datarea…
对重复值的处理 把数据结构中,行相同的数据只保留一行 函数语法: drop_duplicates() from pandas import read_csv df = read_csv(文件位置) newdf = df.drop_duplicates(); 对缺失值的处理 缺失值的产生 1.有些信息暂时无法获取 2.有些信息被遗漏或者错误处理了 缺失值的处理方式 1.数据补齐 2.删除对应缺失行 3.不处理 缺失值处理 dropna函数的作用:去除数据结构中值为空的数据 dropna函数语法:d…
class A(): def __init__(self,b): self.b=b # def __iter__(self): # 这个函数可以用,表示迭代标志,但也可以省略 # return self def __next__(self): if self.b<10: self.b=self.b+2 else: raise StopIteration self.d=self.b+10 return self.d def K(self): self.b=500*self.b return sel…