为什么 MySQL 使用 B+ 树】的更多相关文章

SQL优化 MySQL版  - -B树索引详讲 作者:Stanley 罗昊 [转载请注明出处和署名,谢谢!] 为什么要进行SQL优化呢?很显然,当我们去写sql语句时: 1会发现性能低 2.执行时间太长, 3.或等待时间太长 4.sql语句欠佳,以及我们索引失效 5.服务器参数设置不合理 SQL语句执行过程分析 1.编写过程: 编写过程就是我们平常写sql语句的过程,也可以理解为编写顺序,以下就是我们编写顺序: select from join on where 条件 group by 分组 h…
B-树由来 定义:B-树是一类树,包括B-树.B+树.B*树等,是一棵自平衡的搜索树,它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点.B-树是专门为外部存储器设计的,如磁盘,它对于读取和写入大块数据有良好的性能,所以一般被用在文件系统及数据库中. 先来看看为什么会出现B-树这类数据结构. 传统用来搜索的平衡二叉树有很多,如 AVL 树,红黑树等.这些树在一般情况下查询性能非常好,但当数据非常大的时候它们就无能为力了.原因当数据量非常大时,内存不够用,大部分数据只能存放在磁盘…
索引是一种数据结构,用于帮助我们在大量数据中快速定位到我们想要查找的数据.索引最形象的比喻就是图书的目录了.注意这里的大量,数据量大了索引才显得有意义,如果我想要在 [1,2,3,4] 中找到 4 这个数据,直接对全数据检索也很快,没有必要费力气建索引再去查找. 索引在 MySQL 数据库中分三类: B+ 树索引 Hash 索引 全文索引 我们今天要介绍的是工作开发中最常接触到的 InnoDB 存储引擎中的 B+ 树索引.要介绍 B+ 树索引,就不得不提二叉查找树,平衡二叉树和 B 树这三种数据…
引言 好久没写文章了,今天回来重操旧业.毕竟现在对后端开发的要求越来越高,大家要做好各种准备. 因此,大家有可能遇到如下问题 为什么Mysql中Innodb的索引结构采取B+树? 回答这个问题时,给自己留一条后路,不要把B树喷的一文不值.因为网上有些答案是说,B树不适合做文件存储系统的索引结构.如果按照那种答法,自己就给自己挖了一个坑,很难收场.因此,就有了这篇文章的诞生~ 文末附面试指南! 正文 这里的Mysql指的是Innodb的存储引擎下的索引结构,其他存储引擎我们暂时不讨论. B树和B+…
为什么 MySQL 使用 B+ 树是面试中经常会出现的问题,很多人对于这个问题可能都有一些自己的理解,但是多数的回答都不够完整和准确,大多数人都只会简单说一下 B+ 树和 B 树的区别,但是都没有真正回答 MySQL 为什么选择使用 B+ 树这个问题,我们在这篇文章中就会深入分析 MySQL 选择 B+ 树背后的一些原因. 概述 首先需要澄清的一点是,MySQL 跟 B+ 树没有直接的关系,真正与 B+ 树有关系的是 MySQL 的默认存储引擎 InnoDB,MySQL 中存储引擎的主要作用是负…
引言 好久没写文章了,今天回来重操旧业. 今天讲的这个主题,是<面试官:谈谈你对mysql索引的认识>,里头提到的一个坑. 也就是说,如果面试官问的是,为什么Mysql中Innodb的索引结构采取B+树?这个问题时,给自己留一条后路,不要把B树喷的一文不值.因为网上有些答案是说,B树不适合做文件存储系统的索引结构.如果按照那种答法,自己就给自己挖了一个坑,很难收场.因此,就有了这篇文章的诞生~ 正文 这里的Mysql指的是Innodb的存储引擎下的索引结构,其他存储引擎我们暂时不讨论. B树和…
众所周知,MySQL的索引使用了B+树的数据结构.那么为什么不用B树呢? 先看一下B树和B+树的区别. B树 维基百科对B树的定义为"在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据.对其进行排序并允许以O(log n)的时间复杂度运行进行查找.顺序读取.插入和删除的数据结构.B树,概括来说是一个节点可以拥有多于2个子节点的二叉查找树.与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作.B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度.普遍运用在…
简述一下索引: 索引是数据库表中一列或多列的值进行排序的一种数据结构:索引分为聚集索引和非聚集索引,聚集索引查询类似书的目录,快速定位查找的数据,非聚集索引查询一般需要再次回表查询一次,如果不使用索引就会进行全表扫描:还有可以进行多字段组成联合索引,但是要符合最左匹配原则要求. 如果使用覆盖索引就可以不回表扫描. 索引类型:InnoDB引擎,默认B+树(O(logN)).Hash索引 B树索引 O(1) 1.由于底层是使用hash表,以key-value存储,无法直接通过索引查询,只选择一个数据…
原来一直使用id与 parent_id结合的办法设计树,最近发现有些问题: 1.查询此结点下所有子结点的需求. 2.查询此结点上所有父结点的需求. 这些需求在oracle和sql server中可以使用一些办法在数据库端进行处理,但在mysql中处理就稍显麻烦,在sqlite中基本无解.所以想办法重新设计一下就显的很有必要的了. 添加两列:structure_node varchar(128)和 level int(11) root 001 第一级第一个结点 001 001 第一级第二个结点 0…
MySQL的MyISAM.InnoDB引擎默认均使用B+树索引(查询时都显示为"BTREE"),本文讨论两个问题: 为什么MySQL等主流数据库选择B+树的索引结构? 如何基于索引结构,理解常见的MySQL索引优化思路? 为什么索引无法全部装入内存 索引结构的选择基于这样一个性质:大数据量时,索引无法全部装入内存. 为什么索引无法全部装入内存?假设使用树结构组织索引,简单估算一下: 假设单个索引节点12B,1000w个数据行,unique索引,则叶子节点共占约100MB,整棵树最多20…