什么是 DQN】的更多相关文章

Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Let's make a DQN. 1. Theory2. Implementation3. Debugging4. Full DQN5. Double DQN and Prioritized experience replay (available soon) Introduction In Febr…
DQN算法:基础入门看看 # -*- coding: utf-8 -*- import random import gym import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam EPISODES = 1000 class DQNAgent: def __…
本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景:  一. 1个 5x5 的 格子图, 里面有一个目标点,  2个死亡点二. 一个迷宫,   一个出发点,  3处 分叉点, 5个死角, 1条活路Q-learning 的概念 其实就是一个算法, 数学的,或者软件程序的算法而已.   对于这种 死的(固定的游戏), 我个人觉得其实就是个穷举算法而已.  Q-learning  步骤:场景一:假设前提:  成功的路  A1, A2, ..... An   …
在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN.本章内容主要参考了ICML 2016的deep RL tutorial和Dueling DQN的论文<Dueling Network Architectures for Deep Reinforcement Learning>(ICML 2016). 1. Dueling DQN的优化点考虑 在前面讲到的DDQN中,…
在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他值得优化的点,文本就关注于Nature DQN的一个改进版本: Double DQN算法(以下简称DDQN). 本章内容主要参考了ICML 2016的deep RL tutorial和DDQN的论文<Deep Reinforcement Learning with Double Q-learning…
在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我们在DDQN的基础上,对经验回放部分的逻辑做优化.对应的算法是Prioritized Replay DQN. 本章内容主要参考了ICML 2016的deep RL tutorial和Prioritized Replay DQN的论文<Prioritized Experience Replay>(I…
在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning(以下简称DQN)的改进版,今天我们来讨论DQN的第一个改进版Nature DQN(NIPS 2015). 本章内容主要参考了ICML 2016的deep RL tutorial和Nature DQN的论文. 1. DQN(NIPS 2013)的问题 在上一篇我们已经讨论了DQN(NIPS 2013…
1 概述 在之前介绍的几种方法,我们对值函数一直有一个很大的限制,那就是它们需要用表格的形式表示.虽说表格形式对于求解有很大的帮助,但它也有自己的缺点.如果问题的状态和行动的空间非常大,使用表格表示难以求解,因为我们需要将所有的状态行动价值求解出来,才能保证对于任意一个状态和行动,我们都能得到对应的价值.因此在这种情况下,传统的方法,比如Q-Learning就无法在内存中维护这么大的一张Q表. 针对上面的问题,于是有人提出用一个模型来表示状态,动作到值函数的关系.我们令状态为 $s \in S…
原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearning与强化学习reinforcementlearning相结合,实现了从感知到动作的端到端的革命性算法.使用DQN玩游戏的话简直6的飞起,其中fladdy bird这个游戏就已经被DQN玩坏了.当我们的Q-table他过于庞大无法建立的话,使用DQN是一种很好的选择 1.算法思想 DQN与Qlean…
原文地址: https://www.cnblogs.com/pinard/p/9797695.html ---------------------------------------------------------------------------------------- 在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我们在DDQN的基础…
原文地址: https://www.cnblogs.com/pinard/p/9778063.html ----------------------------------------------------------------------------------------------- 在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他值得…
原文地址: https://www.cnblogs.com/pinard/p/9756075.html ------------------------------------------------------------------------------------------------------- 在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Le…
已经成为DL中专门的一派,高大上的样子 Intro: MIT 6.S191 Lecture 6: Deep Reinforcement Learning Course: CS 294: Deep Reinforcement Learning Jan 18: Introduction and course overview (Levine, Finn, Schulman) Slides: Levine Slides: Finn Slides: Schulman Video Why deep rei…
最近在学习强化学习的东西,在网上发现了一个关于DQN讲解的PPT,感觉很是不错,这里做下记录,具体出处不详. =========================================================…
最近师弟在做DQN的实验,由于是强化学习方面的东西,正好和我现在的研究方向一样于是我便帮忙跑了跑实验,于是就有了今天的这个内容. 首先在github上进行搜寻,如下图: 发现第一个星数最多,而且远高于其它的项目,于是拉取这个链接: https://github.com/devsisters/DQN-tensorflow 本篇博客主要是讲解一下该代码运行环境的如何搭建,采用  conda 配置. 首先看下  README  上的内容, 主要是requirement最重要: 考虑到运行的兼容性,于是…
目录 值函数的近似 DQN Nature DQN DDQN Prioritized Replay DQN Dueling DQN 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展历程(五) 值函数的近似 当状态-动作数目太多时,使用表格存储所有的状态-动作会造成维度灾难,无法求解大规模问题. 可以采用一个函数来近似这个这个表格,输入状态-动作,输出对应的状态值. 可以使用神经网络来充当这个近似函数. DQN 使用来一个神经网络来作为近似函数…
目录 不基于模型(Model-free)的预测 蒙特卡罗方法 时序差分方法 多步的时序差分方法 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展历程(五) 不基于模型(Model-free)的预测 无法事先了解状态转移的概率矩阵 蒙特卡罗方法 从开始状态开始,到终结状态,找到一条完整的状态序列,以求解每个状态的值.相比于在整个的状态空间搜索,是一种采样的方法. 对于某一状态在同一状态序列中重复出现的,有以下两种方法: 只选择第一个状态进行求…
目录 不基于模型的控制 选取动作的方法 在策略上的学习(on-policy) 不在策略上的学习(off-policy) 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展历程(五) 不基于模型的控制 选取动作的方法 贪婪法,每次控制都选择状态值最大的动作,容易局部收敛,找不到全局最优. 引入 epsilon-greedy,按 epsilon 的概率随机选择一个动作,按 1 - epsilon 的概率使用贪婪法,选择状态值最大的动作 在策略上的…
目录 动态规划 使用条件 分类 求解方法 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展历程(五) 动态规划 动态规划给出了求解强化学习的一种方式 使用条件 使用动态规划需要两个条件 总问题可以分解成一系列相互重叠的子问题 子问题的求解结果被存储下来并且可以重复使用 强化学习对应以上两个条件 贝尔曼等式满足了重叠子问题的分解,每个状态的值求解从当前状态到下一状态. 值函数用于存储和复用子问题的求解结果 分类 对于预测问题,动态规划方法输出…
目录 马尔可夫理论 马尔可夫性质 马尔可夫过程(MP) 马尔可夫奖励过程(MRP) 值函数(value function) MRP求解 马尔可夫决策过程(MDP) 效用函数 优化的值函数 贝尔曼等式 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展历程(五) 马尔可夫理论 马尔可夫性质 P[St+1 | St] = P[St+1 | S1,...,St] 给定当前状态 St ,过去的状态可以不用考虑 当前状态 St 可以代表过去的所有状态…
1 DQN的引入 由于q_learning算法是一直更新一张q_table,在场景复杂的情况下,q_table就会大到内存处理的极限,而且在当时深度学习的火热,有人就会想到能不能将从深度学习中借鉴方法,将深度学习的方法应用到强化学习中.13年,谷歌的deepmind团队就发表了关于DQN算法的论文,促进了强化学习的发展,扩展了强化学习的应用场景. 2 将深度学习应用到强化学习的挑战 将深度学习应用到强化学习上主要有两大挑战,下面具体说明这两种挑战是什么 2.1 第一个挑战是关于样本的分布: 深度…
初始 DQN 程序 所遇到的问题 最近在看 DQN,但是想试试别人放出来的 code,但是发现,额,各种问题,在此记录,以备不时之需! 问题1. wangxiao@GTX980:~/Documents/DRL/DQN-tensorflow-master$ python main.py --env_name=Breakout-v0 --is_train=TrueI tensorflow/stream_executor/dso_loader.cc:105] successfully opened C…
参考文献 莫凡系列课程视频 增强学习入门之Q-Learning 关于增强学习的基本知识可以参考第二个链接,讲的挺有意思的.DQN的东西可以看第一个链接相关视频.课程中实现了Tensorflow和pytorch的示例代码.本文主要是改写成了gluon实现 Q-learning的算法流程 DQN的算法流程 对于DQN的理解: 增强学习中需要学习的东西是Q-table,决策表.而针对于state space空间太大的情形,很难甚至不可能构建这个决策表.而决策表其实就是一种映射 (s,a)->R, 那么…
这篇没搞懂...这里只对实现做记录. 修改的地方也只是在上一篇的基础上,在“记忆回放”函数里,计算 target Q 时取值做下调整即可. def experience_replay(self): """ 记忆回放. :return: """ # 检查是否替换 target_net 参数 if self.learn_step_counter % self.network.replace_target_stepper == 0: self.netw…
网上搜寻到的代码,亲测比较好用,分享如下. import gym import time env = gym.make('CartPole-v0') # 获得游戏环境 observation = env.reset() # 复位游戏环境,新一局游戏开始 print ('新一局游戏 初始观测 = {}'.format(observation)) for t in range(200): env.render() action = env.action_space.sample() # 随机选择动作…
文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3.3 Dueling Network 4. 总结 强化学习系列系列文章 我们终于来到了深度强化学习. 1. 强化学习和深度学习结合 机器学习=目标+表示+优化.目标层面的工作关心应该学习到什么样的模型,强化学习应该学习到使得激励函数最大的模型.表示方面的工作关心数据表示成什么样有利于学习,深度学习是最…
Introduction 深度增强学习Deep Reinforcement Learning是将深度学习与增强学习结合起来从而实现从Perception感知到Action动作的端对端学习的一种全新的算法.简单的说,就是和人类一样,输入感知信息比如视觉,然后通过深度神经网络,直接输出动作,中间没有hand-crafted工作.深度增强学习具备使机器人实现完全自主的学习一种甚至多种技能的潜力. 虽然将深度学习和增强学习结合的想法在几年前就有人尝试,但真正成功的开端是DeepMind在NIPS 201…
看过Deep learning(convolutional neural network),看过RL(Q-learning).但是在两者结合这一块一直弄不明白. 我的疑问在于一直不明白DL是怎样识别出那个特定的物体,比如,木板或者小鸟.以及Q-learning怎样做决策. 后来才发现,DQN的核心思想并没有识别出特定物体. DQN里面的Deep learning部分,输入是原始图像,输出是action对应的Q值(类似于有这么多action类,每一类的概率值).原始图像就是当前state (cur…
DQN的变形 double DQN prioritised replay dueling DQN…
转自:http://blog.csdn.net/v_JULY_v/article/details/52810219?locationNum=3&fps=1 目录(?)[-] 教你从头到尾利用DQN自动玩flappy bird全程命令提示GPUCPU 前言 第一部分GPU版教程 1NVIDIA驱动CUDAcudnn安装 下载相应文件后续 使用下载地址 11 Install NVIDIA Driver 安装NVIDIA驱动 12 Install CUDA 安装CUDA 13 Install cuDN…