opencv中矩阵计算的一些函数】的更多相关文章

转自:http://blog.sina.com.cn/s/blog_7908e1290101i97z.html 综述: OpenCV有针对矩阵操作的C语言函数. 许多其他方法提供了更加方便的C++接口,其效率与OpenCV一样. OpenCV将向量作为1维矩阵处理. 矩阵按行存储,每行有4字节的校整. //由于opencv的矩阵式一位数组或者一位指针,所以我们只能利用opencv的函数对矩阵元素进行操作(当然这样也是最安全的做法,- -!太不习惯了) 分配矩阵空间: CvMat* cvCreat…
近段时间在搞opencv的视频人脸识别,无奈自带的分类器的准确度,实在是不怎么样,但又能怎样呢?自己又研究不清楚各大类检测算法. 正所谓,功能是由函数完成的,于是自己便看cvHaarDetectObjects 这个识别主函数的源代码,尝试了解并进行改造它,以提高精确度. 可惜实力有限啊,里面的结构非常复杂,参杂着更多的函数体,有一些是网上找不到用法的,导致最终无法整体了解,只搞了一般,这里分享 下我自己总结的注释. CvSeq* cvHaarDetectObjects( const CvArr*…
1.      void ellipse(InputOutputArray img, Point center, Size axes, double angle, double startAngle, double endAngle, const Scalar& color, int thickness = 1,   int lineType = LINE_8, int shift = 0); ellipse函数将椭圆画到图像 lmg 上, 椭圆中心为点center,并且大小位于矩形 axes…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相信你们大多数人都玩过拼图游戏吧.首先你们拿到一张图片的一堆碎片,要做的就是把这些碎片以正确的方式排列起来从而重建这幅图像.问题是,你怎样做到的呢?如果把你做游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了.如果计算机可以玩拼图,我们就可以给计算机一大堆自然图片,然后就可以让计算机把它拼成一张大图…
一.K近邻 有两个类,红色.蓝色.我将红色点标记为0,蓝色点标记为1.还要创建25个训练数据,把它们分别标记为0或者1.Numpy中随机数产生器可以帮助我们完成这个任务 import cv2 import numpy as np import matplotlib.pyplot as plt # 包含25个已知/训练数据的(x,y)值的特征集 trainData = np.random.randint(, , (, )).astype(np.float32) # 用数字0和1分别标记红色和蓝色…
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 19 Canny 边缘检测 目标 • 了解 Canny 边缘检测的概念 • 学习函数 cv2.Canny() 19.1 原理 Canny 边缘检测是一种非常流行的边缘检测算法,是 John F.Canny 在1986 年提出的.它是一个有很多步构成的算法,我们接下来会逐步介绍. 19.1.1 噪声去除 由于边缘检测很容易受到噪声影响,所以第一步是使用 5x5 的高斯滤波器去除噪声,这个前面我们已经学过了. 1…
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 22 直方图 22.1 直方图的计算,绘制与分析目标 • 使用 OpenCV 或 Numpy 函数计算直方图 • 使用 Opencv 或者 Matplotlib 函数绘制直方图 • 将要学习的函数有:cv2.calcHist(),np.histogram()原理 什么是直方图呢?通过直方图你可以对整幅图像的灰度分布有一个整体的了解.直方图的 x 轴是灰度值(0 到 255),y 轴是图片中具有同一个灰度值的点…
seamlessClone是OpenCV中新出现的函数,应该说如果能够基于较为准确的图像分割,能够得到很好的结果. 原始的前景,背景 三种flag下的融合结果   //注意头文件中添加  #include <opencv2/photo.hpp>  ,dst.rows);    ;} 当然选择这个例子有些讨巧的存在,因为前景为白底红色的文字,这个时候还是比较好进行区分的.同时我还做了一些其他图片的实验. 使用蝴蝶和星空来进行融合…
支持向量机(SVM)中最核心的是什么?个人理解就是前4个字--"支持向量",一旦在两类或多累样本集中定位到某些特定的点作为支持向量,就可以依据这些支持向量计算出来分类超平面,再依据超平面对类别进行归类划分就是水到渠成的事了.有必要回顾一下什么是支持向量机中的支持向量. 上图中需要对红色和蓝色的两类训练样本进行区分,实现绿线是决策面(超平面),最靠近决策面的2个实心红色样本和1个实心蓝色样本分别是两类训练样本的支持向量,决策面所在的位置是使得两类支持向量与决策面之间的间隔都达到最大时决策…
目标 了解如何在OpenCV中使用cv.kmeans()函数进行数据聚类 理解参数 输入参数 sample:它应该是np.float32数据类型,并且每个功能都应该放在单个列中. nclusters(K):结束条件所需的簇数 criteria:这是迭代终止条件.满足此条件后,算法迭代将停止.实际上,它应该是3个参数的元组.它们是(type,max_iter,epsilon): a. 终止条件的类型.它具有3个标志,如下所示: cv.TERM_CRITERIA_EPS-如果达到指定的精度epsil…