弹性分布式数据集RDD概述】的更多相关文章

  [Spark]弹性分布式数据集RDD概述 弹性分布数据集RDD RDD(Resilient Distributed Dataset)是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现.RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现.RDD必须是可序列化的.RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存…
http://blog.csdn.net/pipisorry/article/details/53257188 弹性分布式数据集RDD(Resilient Distributed Dataset) 术语定义 l弹性分布式数据集(RDD): Resillient Distributed Dataset,Spark的基本计算单元,可以通过一系列算子进行操作(主要有Transformation和Action操作): l有向无环图(DAG):Directed Acycle graph,反应RDD之间的依…
RDD(Resilient Distributed Dataset)是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现.RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现.RDD必须是可序列化的.RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作.这对于迭代运算比…
一.RDD(弹性分布式数据集) RDD 是 Spark 最核心的数据结构,RDD(Resilient Distributed Dataset)全称为弹性分布式数据集,是 Spark 对数据的核心抽象,也是最关键的抽象,它实质上是一组分布式的 JVM 不可变对象集合,不可变决定了它是只读的,所以 RDD 在经过变换产生新的 RDD 时,原有 RDD 不会改变. 1.1.设计背景 在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下…
1. RDD概述 1.1 什么是RDD (1) RDD(Resilient Distributed Dataset)弹性分布式数据集,它是Spark的基本数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合. (2) 具有数据流模型的特点:自动容错.位置感知性调度.可伸缩性. (3) 查询速度快:在执行多个查询时,可以显示的将工作集缓存到内存中,后续的查询能够重用缓存的工作集. 1.2 RDD的属性 打开Spark源代码,源码的注释中对RDD的描述如下图.     (1) A list…
摘要:     本文提出了分布式内存抽象的概念--弹性分布式数据集(RDD,Resilient Distributed Datasets).它同意开发者在大型集群上运行基于内存的计算.RDD适用于两种应用,而现有的数据流系统对这两种应用的处理并不高效:一是迭代式算法,这在图应用和机器学习领域非经常见.二是交互式数据挖掘工具.这两种情况下.将数据保存在内存中可以极大地提高性能.为了有效地实现容错,RDD提供了一种高度受限的共享内存,即RDD在共享状态的时候是基于粗粒度的转换而不是细粒度的更新(换句…
Spark的核心RDD Resilient Distributed Datasets(弹性分布式数据集)   Spark运行原理与RDD理论 Spark与MapReduce对比,MapReduce的计算和迭代是基于磁盘的,而Spark的迭代和计算是尽量基于内存,只有在内存空间不能容纳计算结果时才将溢出的部分数据缓冲到磁盘存储,因此Spark是将内存与磁盘结合起来使用的一种架构,它既可以适应超大型的批量离线数据集处理(因为它可以基于磁盘),也可以适应基于实时的流数据分析计算(因为它可以基于内存迭代…
第1章 RDD概念  弹性分布式数据集 1.1 RDD为什么会产生 RDD是Spark的基石,是实现Spark数据处理的核心抽象.那么RDD为什么会产生呢? Hadoop的MapReduce是一种基于数据集的工作模式,面向数据,这种工作模式一般是从存储上加载数据集,然后操作数据集,最后写入物理存储设备.数据更多面临的是一次性处理. MR的这种方式对数据领域两种常见的操作不是很高效.第一种是迭代式的算法.比如机器学习中ALS.凸优化梯度下降等.这些都需要基于数据集或者数据集的衍生数据反复查询反复操…
org.apache.spark.rddRDDabstract class RDD[T] extends Serializable with Logging A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. Thi…
RDD的中文解释是弹性分布式数据集.构造的数据集的时候用的是List(链表)或者Array数组类型/* 使用makeRDD创建RDD */ /* List */ val rdd01 = sc.makeRDD(List(,,,,,)) val r01 = rdd01.map { x => x * x } println(r01.collect().mkString(",")) /* Array */ val rdd02 = sc.makeRDD(Array(,,,,,)) val…