2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\partial f}{\partial x} \\& \frac{\partial f}{\partial y} \\\end{aligned} \right]=\left[ \begin{aligned}& 2x \\& 3{{y}^{2}} \\\end{aligned} \right…
ChemDraw Pro 14是一款专门针对化学图形绘制而开发制作的编辑软件,是目前工科类常用的绘制化学结构工具,用于快速绘制常用的环结构组成.以下教程讲解ChemDraw Pro绘制无环链结构的两种方法. ChemDraw Pro 14图形工具图标板上的[无环链]工具用于快速绘制任意长度链,绘制无环链结构就是使用该工具. 绘制无环链的方法有如下两种: 方法一 输入碳原子数来决定链长 1.选无环链工具,在编辑区域点击鼠标: 2.出现一增加链对话框,输入链的碳原子个数,点Add按钮即可(见下图):…
此部分内容接02(a)多元无约束优化问题的内容! 第一类:最速下降法(Steepest descent method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\approx f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }\] 要使新找到的一点${{\mathbf{x}}_{k}}+\mathbf{\delta }$的函数值小于原来点${{\m…
此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ }\approx \text{ }f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }+\frac{1}{2}{{\mathbf{\delta }}^{T}}\cdot {{\nabla }^{2}}f…
2.1 基本优化问题 $\operatorname{minimize}\text{    }f(x)\text{       for   }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤为: Step1:选择一个初始出点${{\mathbf{x}}_{0}}$(这里的${{\mathbf{x}}_{0}}$是向量),设置一个收敛误差$\varepsilon $(解的精度)和一个迭代次数$k=0$: Step2:找到从点${{\mathbf{x}}_{k}}$使函数$f(x)$下降最…
此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}=-{{\mathbf{S}}_{k}}\cdot \nabla f({{\mathbf{x}}_{k}})$ 关键就是这里的${{\mathbf{S}}_{k}}$,主要有两拨人对拟牛顿法做出了贡献他们分别针对${{\mathbf{S}}_{k}}$,提出了两种不同的方法:注:下式中的${{\mathbf{\…
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其慢(几乎不适用): 牛顿法是基于目标函数的二阶导数(Hesse 矩阵)的,其收敛速度较快,迭代次数较少,尤其是在最优值附近时,收敛速度是二次的.但牛顿法的问题在于当海森矩阵稠密时,每次迭代的计算量比较大,因为每次都会计算目标函数的海森矩阵的逆,这样一来,当数据维度较高时,不仅计算量…
1.解方程转化为优化问题 $n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{   }\vdots  \\& {{P}_{n}}(x)=0 \\\end{aligned} \right.\text{              }x=\left[ \begin{aligned}  & {{x}_{1}} \\& {{x}_{2}} \\& \vdots  \\…
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下.下面将无约束项优化算法的细节进行描述.为了尊重别人的劳动成果,本文的出处是:http://blog.csdn.net/itplus/article/details/21896453 . 从这里我们可以看出:要想迭代出Xk+1,就只需要计算Dk+1即可.DFP算法是对Dk+1的一个近似…
首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相等正方形,制成方形无盖水槽.怎样减使水槽容积最大. 解:列出目标函数(加负号,转化为求最小) min y=-((3-2x)^2)*x 例3 求多元函数最小值 minf(x)=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1) 下面是MATLAB优化工…