传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include…
题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是把度数矩阵和邻接矩阵带权化,也就是度数矩阵变成该点连接的所有边的权值和,邻接矩阵变成边权矩阵,剩下的依然是求一个行列式.变元矩阵树求的是所有可能生成树的边权之积. 值得注意的点: 交换两行,行列式取反.在\(double\)存矩阵的时候可以最后取对角线乘积的绝对值,但如果答案要取膜就需要套上一个辗转…
In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be c…
题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个东西.. 无奈去翻题解,,, 发现可以用类似辗转相除法去消,而避免除法,,, 这样子依旧是每次一行减去另一行乘一个数,行列式不变 orz #include<algorithm> #include<iostream> #include<cstring> #include<…
正题 题目链接:https://www.luogu.com.cn/problem/CF917D 题目大意 给出\(n\)个点的一棵树,对于每个\(k\)求有多少个\(n\)个点的树满足与给出的树恰好有\(k\)条边重合. 解题思路 矩阵树有一个统计所有树边权和的和用法,就是把变量变成一个形如\(wx+1\)的多项式,这样一次项系数的值就表示了固定选择一条边的\(w\)时其他边的方案数之和. 这题我们可以同理,对于在给出数上的边是\(x\),而其他就是\(1\).那么最后询问\(x^k\)的系数就…
给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成树的权值和. Solution 很容易想到,设 \(G_1\) 中每条边的权值,这条边在 \(G_2\) 中出现则权值为 \(1\),否则权值为 \(0\). 现在就真的是求所有生成树的边权和的权值和了. 然而标准的 Matrix-Tree Theorem 求的是生成树的边权积的和. 现在我们定义每…
qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才会有多种最小生成树. 那我们不妨对于原图先随意求一个最小生成树,然后对于出现在最小生成树上的每个权值计算贡献. 我们每次删除所有该权值的边,然后把剩下的点能缩点的进行缩点(用并查集来维护) 然后,我们构造一个联通块的拉普拉斯矩阵.也就是说,加入所有的在图中的,权值为该值的边.然后我们只需要求能重新构…
矩阵树定理裸题 //#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #define R(a,b,c) for(register int a = (b); a <= (c); ++ a) #define nR(a,b,c) for(register int a = (b); a >= (c); -…
首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - E(u, v))$$ 我们知道变元矩阵树定理 ---> 不知道请见此 我们自然希望要求和的事物只跟生成树的边有关 因此考虑把$\prod\limits_{E \notin Tree} (1 - E(u, v))$转化为$\prod\limits_{E} (1 - E(u, v)) * \frac{1…
题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder.com/stat?c=problem_statement&pm=13369 题解 首先分析 CF917D. 我们考虑能否将树上的边的贡献特殊表现出来. 记原树为 \(T\),我们构造一幅 \(n\) 个结点的无向完全图,并设置一个值 \(x\),对于无向边 \((u, v)\),其权值 \(w_{…
有同学在loj上找到了加强版 所以这道题是可以交的.LINK:生成树求和 加强版 对于30分 爆搜 可实际上我爆搜只过了25分 有同学使用按秩合并并茶几的及时剪枝通过了30分. const int MAXN=45; int n,m; struct wy { int x,y,z; }t[MAXN]; int w[MAXN],f[MAXN];ll ans; inline int getfather(int x){return x==f[x]?x:getfather(f[x]);} inline in…
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define eps 1e-8 #define ma…
题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #include<cstdlib> #include<cctype> #include<algorithm> #include<cstring> #include<cmath> #define eps 1e-8 #define maxn 100 using na…
4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 937  Solved: 456[Submit][Status][Discuss] Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一些相邻房间的墙,使得所有房间能够互相到达.在此过程中,你不能把…
传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有$N \times M$的元.$N \times M$个方程的异或方程组(异或方程组就是所有位置都是$1$或$0$,最右边一列的答案需要通过异或互相消除的方程组,一般在$mod\,2$意义下产生). 理论上元和方程组数量一致的时候每一个元都是有唯一解的,但是在有解的情况下,其中一些方程是线性相关的,…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2466 [题目大意] 给定一棵树,每个节点有一盏指示灯和一个按钮.如果节点的按扭被按了, 那么该节点的灯会从熄灭变为点亮(当按之前是熄灭的),或者从点亮到熄灭 并且该节点的直接邻居也发生同样的变化.开始的时候,所有的指示灯都是熄灭的. 请编程计算最少要按多少次按钮,才能让所有节点的指示灯变为点亮状态. [题解] 高斯消元枚举自由变元回代. [代码] #include <cstdio>…
[bzoj4031][HEOI2015]小Z的房间 2015年4月30日3,0302 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一些相邻房间的墙,使得所有房间能够互相到达.在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙).同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路.现在,…
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\(A\)为邻接矩阵,\(D\)为度数矩阵,则基尔霍夫(Kirchhoff)矩阵即为:\(K = D - A\).具体实现中,记 \(a\) 为Kirchhoff矩阵,则若存在 \(E(u, v)\) ,则\(a[u][u] ++, a[v][v] ++, a[u][v] --, a[v][u] --\…
思路 变元矩阵树定理可以统计最小生成树边权积的和,将A矩阵变为边权,D变为与该点相连的边权和,K=D-A,求K的行列式即可 把式子化成 \[ \begin{align}&\sum_{T}\prod_{e\in T}p_e\prod_{i\not\in T}(1-p_i)\\=&\sum_T\prod_{e\in T}p_e\prod_{i}(1-p_i)\prod_{e\in T}\frac{1}{(1-p_e)}\\=&\sum_T\prod_{e\in T}\frac{p_e}…
转载自:http://hi.baidu.com/czyuan_acm/item/dce4e6f8a8c45f13d7ff8cda czyuan 先上模板: /* 用于求整数解得方程组. */ #include <iostream> #include <string> #include <cmath> using namespace std; ; int equ, var; // 有equ个方程,var个变元.增广阵行数为equ, 分别为0到equ - 1,列数为var…
题目链接: http://poj.org/problem?id=1222 题意: 有一个 5 * 6 的初始矩阵, 1 表示一个亮灯泡, 0 表示一个不亮的灯泡. 对 (i, j) 位置进行一次操作则 (i, j), (i + 1, j), (i - 1, j), (i, j - 1),  (i, j + 1) 位置的灯泡变为原来的相反状态, 输出一种能让所有灯泡都变成不亮状态的操作集合. 思路: 1. 可以先枚举第一行的所有操作集合, 2^6 种, 第一行的每一种操作后都得到一个灯泡状态集合,…
传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1.当该点为餐厅,Ek=0 2.\(Ek=\sum_{i=1}^{cnt}Enexti-1\) 我们先BFS将可达点标号,再构建矩阵,再高斯消元,最后A[vis[sx][sy]][id]为所求解 trick 代码 #include<bits/stdc++.h> using namespace std…
线性空间:是由一组基底构成的所有可以组成的向量空间 对于一个n*m的矩阵,高斯消元后的i个主元可以构成i维的线性空间,i就是矩阵的秩 并且这i个主元线性无关 /* 每个向量有权值,求最小权极大线性无关组 本题是使用贪心策略的高斯消元 由输入给出的n个物品,每个物品有m种属性,和价格price 如果a物品的属性可以由其他已有物品的属性组合出,那么a可以不必购买 问最少花掉多少钱,使得所有物品都可以组合出 首先构建n*m矩阵,然后高斯消元 在求第i个主元时,取价格最小的那个即可 可用反证法证明 */…
首先科普下Pivoting的含义 一般翻译为“主元”,在对矩阵做某种算法时,首先进行的部分元素.在线性规划的单纯形法中常见.wiki的解释如下:Pivot element(the first element distinct from zero in a matrix in echelon form)The pivot or pivot element is the element of a matrix,which is selected first by an algorithm (e.g.…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显的高斯消元的模型. 现场一开始想的也大概是对的. 根据度可以得到n个方程,加起来为1是一个方程,有一个是多余的. 加起来就是n个方程. 只可能是无穷解和唯一解的情况. 现场是先求解一遍,然后枚举所有可以加的,不停做高斯消元. 但是因为高斯消元是O(n^3) 的, 再枚举的话就是n^4了.... 这样…
[CF802L]Send the Fool Further! (hard) 题意:给你一棵n个节点的树,每条边有长度,从1号点开始,每次随机选择一个相邻的点走,走到一个叶子时就停止,问期望走的总路程. $n\le 10^5$ 题解:很自然想到游走那题,于是想到高斯消元,但是正常高斯消元是$O(n^3)$的.不过我们有一个套路:在树上进行高斯消元的复杂度是$O(n)$的. 先列出方程:设f(x)表示从x开始期望还要走的路程,x的度数是d,那么$f(x)=\frac {f(fa)+len} d+\f…
传送门 高斯消元解异或方程组 小Ho在游戏板上忙碌了30分钟,任然没有办法完成,于是他只好求助于小Hi. 小Ho:小Hi,这次又该怎么办呢? 小Hi:让我们来分析一下吧. 首先对于每一个格子的状态,可能会对它造成影响的是其自身和周围4个格子,这五个格子被按下的总次数也就等于该格子所改变的总次数. 对于任意一个格子,如果这个格子改变了偶数次状态,则等价于没有发生改变. 我们可以将1看作格子亮着,0看作格子暗着,每改变1次就加1,最后格子的状态等于其总数值 MOD 2. 则其运算结果刚好满足异或运算…
最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=29538#overview 专题地址来源于kuangbin大神,多谢kuangbin大神总结的高斯消元的模板,菜鸟在此谢过啊. POJ1222:http://poj.org/problem?id=1222 题意是有5行六列30个开关,然后每…
题面传送门 之所以写个题解是因为题解区大部分题解的做法都有 bug(u1s1 周六上午在讨论区里连发两个 hack 的是我,由于我被禁言才让 ycx 代发的) 首先碰到这种期望题,我们套路地设 \(dp_u\) 为从节点 \(u\) 走到节点 \(n\) 经过的节点数的期望值,那么显然有转移方程 \(dp_u=\dfrac{1}{deg_u}(\sum\limits_{(u,v)\in E}dp_v)+1\),由于这个 \(dp\) 方程存在环,故需按照 P3232 游走 的套路进行高斯消元,具…
高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在‘=’右侧的所有状态之后) 于是往往只有按DP序转移状态,才可以保证每个状态值的正确性 一道DP的状态序不是唯一的 常见的有: 某些DAG上dp按拓扑序转移: 某些树上DP先转移x点的子树,后转移x: 某些树上DP先转移x,后转移x点的子树: 线性DP左到右或右到左: 区间DP小到大: 某些记忆化搜…