【caffe】基本数据结构blob】的更多相关文章

@tags: caffe blob blob是caffe中的基本数据结构,简单理解就是一个"4维数组".但是,这个4维数组有什么意义? BTW,TensorFlow这款google出的框架,带出了tensor(张量)的概念.虽然是数学概念,个人还是倾向于简单理解为"多维数组",那么放在这里,caffe的blob就相当于一个特殊的tensor了.而矩阵就是二维的张量. anyway,看看blob的4个维度都代表什么: num: 图像数量 channel:通道数量 wi…
首先,Blob使用的小例子(通过运行结果即可知道相关功能): #include <vector> #include <caffe/blob.hpp> #include <caffe/util/io.hpp>//磁盘读写 #include <iostream> using namespace std; using namespace caffe; int main() { Blob<float> a; cout<<"Size:…
本文地址:http://blog.csdn.net/mounty_fsc/article/details/51085654 Caffe中,Blob.Layer,Net,Solver是最为核心的类,下面介绍这几个类,Solver将在下一节介绍. 1 Blob 1.1 简单介绍 Blob是: 对待处理数据带一层封装,用于在Caffe中通信传递. 也为CPU和GPU间提供同步能力 数学上,是一个N维的C风格的存储数组 总的来说.Caffe使用Blob来交流数据,其是Caffe中标准的数组与统一的内存接…
作者:linger 转自须注明转自:http://blog.csdn.net/lingerlanlan/article/details/24379689 数据成员 shared_ptr<SyncedMemory>data_;//data数据.指向SyncedMemory的智能指针 shared_ptr<SyncedMemory>diff_;//表示"差".用于更新data_ intnum_; intchannels_; intheight_; intwidth_…
Blob类是caffe中对处理和传递的实际数据的封装,是caffe中基本的数据存储单元,包括前向传播中的图像数据,反向传播中的梯度数据以及网络层间的中间数据变量(包括权值,偏置等),训练模型的参数等等,可以说在caffe中,无数据不blob. blob可以认为是按C风格连续存储的N维数组,在硬件上可以认为是在内存中的一块连续的内存块. 补充一点智能指针的知识: C++中的动态内存管理是通过new和delete运算符完成的,没有及时delete释放内存或者提前释放内存都可能造成内存异常,导致内存泄…
Blob类简介 Blob是caffe中的数据传递的一个基本类,网络各层的输入输出数据以及网络层中的可学习参数(learnable parameters,如卷积层的权重和偏置参数)都是Blob类型.Blob内部包含SyncedMemory类型的 data_ (数据,用于前向计算)和 diff_ (梯度,用于反向传播),以及表示数据形状的 shape_data_ (旧版本)和 shape_ (新版本).Blob中还有表示有效数据的个数的变量 count_ 和表示当前数据的最大容量的变量 capaci…
首先说明:Blob定义了一个类模板. 让我们看一下Blob的头文件里有什么哈: 定义了一个全局变量: const ; 看看它的构造函数: Blob() : data_(), diff_(), count_(), capacity_() {}: explicit Blob(const int num, const int channels, const int height,const int width); explicit Blob(const vector<int>& shape)…
文章转自:https://zhuanlan.zhihu.com/p/31426458 经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显. 图1 Fa…
转自: https://zhuanlan.zhihu.com/p/31426458 faster rcnn的基本结构 Faster RCNN其实可以分为4个主要内容: Conv layers.作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps.该feature maps被共享用于后续RPN层和全连接层. Region Proposal Networks.RPN网络用于生成region proposa…
  Faster-rcnn实现目标检测 前言:本文浅谈目标检测的概念,发展过程以及RCNN系列的发展.为了实现基于Faster-RCNN算法的目标检测,初步了解了RCNN和Fast-RCNN实现目标检测的具体步骤及其优缺点.在深刻理解Faster-RCNN的基本原理.详细分析其结构后,开始进行对Faster-RCNN的训练.其训练过程包含对RPN网络的训练得到proposals和训练Faster-RCNN.整体过程思想是类似于迭代,但不需要迭代多次.最终得到了较好的实验结果,经分析可知,Fast…