举例:分别用欧拉法和龙哥库塔法求解下面的微分方程 我们知道的欧拉法(Euler)"思想是用先前的差商近似代替倒数",直白一些的编程说法即:f(i+1)=f(i)+h*f(x,y)其中h是设定的迭代步长,若精度要求不高,一般可取0.01.在定义区间内迭代求解即可.龙哥库塔法一般用于高精度的求解,即高阶精度的改进欧拉法,常用的是四阶龙哥库塔,编程语言如下:y(i+1)=y(i)+h*(k1+2*K2+2*k3+k4)/6;k1=f(xi,yi)k2=f(xi+h/2,yi+h*k1/2);…
介绍: 1.在 Matlab 中,用大写字母 D 表示导数,Dy 表示 y 关于自变量的一阶导数,D2y 表示 y 关于自变量的二阶导数,依此类推.函数 dsolve 用来解决常微分方程(组)的求解问题,调用格式为 X=dsolve(‘eqn1’,’eqn2’,…) 如果没有初始条件,则求出通解,如果有初始条件,则求出特解 系统缺省的自变量为 t. 2.函数 dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求…
用Matlab求解微分方程 解微分方程有两种解,一种是解析解,一种是数值解,这两种分别对应不同的解法 解析解 利用dsolve函数进行求解 syms x; s = dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v'); %eq:微分方程 %cond:条件 %v:独立变量 %形如:方程:y'= f(t,y),初值:y(t0) = y0 1.求解析解 dsolve('Du = 1+ u^2','t') ans = tan(C2 + t) 1i -1i 求 的解析…
首先介绍一下ode45的格式: [t,y] = ode45(odefun,tspan,y0) [t,y] = ode45(odefun,tspan,y0,options) [t,y,te,ye,ie] = ode45(odefun,tspan,y0,options) sol = ode45(___) 这里介绍一阶微分方程: [自变量,因变量] = ode45(方程,范围,初值); 举个栗子: 首先创建一个func2.m函数存放方程表达式 function Biubiu = func2(h, t)…
算法的数学描述图解 实例 用Euler算法求解初值问题 \[ \frac{dy}{dx}=y+\frac{2x}{y^2}\] 初始条件\(y(0)=1\),自变量的取值范围\(x \in [0, 2]\) 算法Python3代码求解 # 导入包 import numpy as np import matplotlib.pyplot as plt # 定义求解函数 y_dot = y + 2*x/(y*y) def fx(y, x): return y + 2*x/(y*y) # 算法定义 de…
1.List中常用的 方法集合: 函数原型 ******************************************* *********************************** --------------------------------------------------------------- 用的最多的List之2: ************************************************** ********************…
这是非稳态一维热传导的方法,也叫古典显格式. 如果是做数学建模,就别用了,这种方法计算量比较大,算的很慢,而且收敛不好. 但是如果实在没办法也能凑合用. 该改的地方我都用???代替了. 给个详细解释https://wenku.baidu.com/view/78a359d43b3567ec112d8a77.html?qq-pf-to=pcqq.group function rechuandao() % Llist = ??? N = ; % 空间点数 M = ; alfa = ??? % 导热 /…
#include<iostream> #include<iomanip> using namespace std; int main() { double x, y, h;      //,x为对应的每一步x的值,其中y为对应的每一步y的值 x = 0;      //对x赋初值 y = 1;      //对y赋初值 h = 0.1;      //步长设置为0.1 cout << setiosflags(ios::left); cout << setw(…
#include<iostream> #include<iomanip> using namespace std; int main() { double x,y,yn,h,temp; x=0;      //对x赋初值 y=1;      //对y赋初值 h=0.1;      //步长设置为0.1 cout<<setiosflags(ios::left); cout<<setw(20)<<"y的计算值"; cout<…
摘自<c++和面向对象数值计算>,代码简洁明快,采用类进行封装实现代码,增强代码的重用性,通过继承可实现代码的重用,采用函数指针,通用性增强,在函数改变时只需要单独改变函数部分的代码,无需对所有代码进行重写,对其中代码稍加改动,源代码有缺陷,没有释放内存,会造成内存泄露,在构造函数当中,将源代码的在函数体中赋值,改为列表赋值,可以稍微提高代码的执行效率. #include<iostream> #include <cmath> #include <algorithm…