在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练.在众多的训练算法中,其中最杰出的代表就是BP算法,它是至今最成功的神经网络学习算法.在实际任务中,大部分都是使用的BP算法来进行网络训练的.值得一提的是,BP算法不仅适用于多层前馈网络,对于其他类型的神经网络,例如:训练卷积神经网络和递归神经网络. 由于推导过程太多公式,因而我使用的word的截图.(推导过程参考的是周志华老师的<机器学习>(西瓜书…
前向传播模型 一般我们使用的公式是: \[ a=\frac{1}{1+\exp \left(-\left(w^{T} x+b\right)\right)} = \frac{1}{1+\exp \left(-\left[w^{T} \quad b\right] \cdot[x \quad 1]\right)} \] 对于隐层有多个神经元的情况就是: \[ \begin{array}{l}{a_{1}=\frac{1}{1+\exp \left(w^{(1) T} x+b_{1}\right)}}…
本文大量参照 David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams, Learning representation by back-propagating errors, Nature, 323(9): 533-536, 1986. 在现代神经网络中, 使用最多的算法当是反向传播(BP). 虽然BP有着收敛慢, 容易陷入局部最小等缺陷, 但其易用性, 准确度却是其他算法无可比拟的. 在本文中, $w_{ji}$为连接前一层$…
1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入.例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆圈被称为偏置节点,也就是截距项.神经网络最左边的一层叫做输入层,最右的一层叫做输出层(本例中,输出层只有一个节点).中间所有节点组成的一层叫做隐藏层,因为我们不能在训练样本集中观测到它们的值.同时可以看到,以上神经网络的例子中有3个输入单元(偏置单元不计在内),3个隐藏单元及一个输出单元. 我们用 …
全文参考<机器学习>-周志华中的5.3节-误差逆传播算法:整体思路一致,叙述方式有所不同: 使用如上图所示的三层网络来讲述反向传播算法: 首先需要明确一些概念, 假设数据集\(X=\{x^1, x^2, \cdots, x^n\}, Y=\{y^i, y^2, \cdots, y^n\}\),反向传播算法使用数据集中的每一个样本执行前向传播,之后根据网络的输出与真实标签计算误差,利用误差进行反向传播,更新权重: 使用一个样本\((x, y)\),其中\(x=(x_1, x_2, \cdots,…
BP算法为深度学习中参数更新的重要角色,一般基于loss对参数的偏导进行更新. 一些根据均方误差,每层默认激活函数sigmoid(不同激活函数,则更新公式不一样) 假设网络如图所示: 则更新公式为: 以上列举了最后2层的参数更新方式,第一层的更新公式类似,即上一层的误差来自于下一层所有的神经元,e的更新就是不断建立在旧的e上(这里g可以当做初始的e) 下面上代码: 1,BP算法 # 手写BP算法 import numpy as np # 先更新参数,再继续传播 # layers:包括从输入层到输…
上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输出 层神经元个数. 当中(1<n<=100,1<m<=1000, 1<p<=100, 1<t<=10). 随后为 m 行,每行有 n+1 个整数.每行代表一个样本中的 n 个特征值 (x 1 , x 2 ,..., x n ) 与样本的 实际观測结果 y.特征值…
之前有一篇文章讲了反向传播的原理: 下面这篇文章讲了反向传播为什么高效: https://blog.csdn.net/lujiandong1/article/details/52716726 主要通过对比得到的结论,也就是对比反向传播和之前的算神经网络权重的方法.…
1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inputs. ----cs231n 2.what problems to slove? 2.1introduction 神经网络的本质是一个多层的复合函数,图: 表达式为: 上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b.…
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与反向传播算法(Back propagation). 1.前向传播 ​​ 如图所示,这里讲得已经很清楚了,前向传播的思想比较简单. 举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接,那么结点w的值怎么算呢?就是通过上一层的i,j,k等结点以及对应的连接权值进行加权和运算,最终结果再…