题面 传送门 思路 首先,如果$n$和$m$没有那么大的话,有一个非常显然的dp做法: 设$dp[i][j]$表示长度为i的字符串,最后j个可以匹配模板串前j位的情况数 那么显然,答案就是$\sum_{i=0}^{m-1}dp[n][i]$了 转移过程则需要用一个辅助数组:令$g[i][j]$表示模板串的前缀$i$可以转移到前缀$j$的方法数(注意它可能可以转移到很多个串) 辅助数组的生成可以用next数组来推(模板串太短,其实暴力也是可以的) 那么$dp[i+1][k]=dp[i][j]*g[…
Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0 Input 第一行输入N,M,K.接下来一行输入M位的数. 100%数据N<=10^9,M<=20,K<=1000 40%数据N<=1000 10%数据N<=6…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首先要设计一个不太好想的状态:f[i][j]表示大串上到第 i 位时有小串前 j 位的后缀,且不包含整个小串的方案数: 也就是如果小串是 12312 , f[5][3] 表示目前大串的情况是 **123... : 这个状态要从 i 转移到 i+1 ,还需要一个帮助它的数组 a,a[i][j]表示在长度…
1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Status][Discuss] Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2..…
传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的. 考虑到每次都是一样的就可以用矩阵快速幂优化一波. 代码: #include<bits/stdc++.h> using namespace std; int n,m,mod,fail[21]; bool vis[21][10]; char s[21]; struct Matrix{ int va…
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j)表示dp(x-1, j)对dp(x, i)的贡献.然后用矩阵快速幂就可以了. 时间复杂度O(M3logN + M) ------------------------------------------------------------------- #include<bits/stdc++.h>…
题目链接:https://www.luogu.org/problemnew/show/P3193#sub 题目描述 阿申准备报名参加 GT 考试,准考证号为 N 位数 X1,X2…Xn(0 <= Xi <= 9) ,他不希望准考证号上出现不吉利的数字. 他的不吉利数学 A1​,A2​…Am​(0≤Ai​≤9) 有 M 位,不出现是指 X1​,X2​…Xn​ 中没有恰好一段等于 A1​,A2​…Am​ ,A1​ 输入输出格式 输入格式: 第一行输入N,M,K.接下来一行输入M位的数. 输出格式:…
设f[i][j]是到第i位 已经匹配上了j位的状态数 然后通过枚举下一位放0~9,可以用kmp处理出一个转移的矩阵 然后就可以矩阵快速幂了 #include<bits/stdc++.h> #define pa pair<int,int> #define CLR(a,x) memset(a,x,sizeof(a)) using namespace std; typedef long long ll; ; inline ll rd(){ ll x=;; ;c=getchar();} +…
题意:给出一个字符集和一个字符串和正整数n,问由给定字符集组成的所有长度为n的串中不以给定字符串为连续子串的有多少个? 析:n 实在是太大了,如果小的话,就可以用动态规划做了,所以只能用矩阵快速幂来做了,dp[i][j] 表示匹配完 i 到匹配 j 个有多少种方案,利用矩阵的性质,就可以快速求出长度为 n 的个数,对于匹配的转移,正好可以用KMP的失配函数来转移. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000")…
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优化dp. 我们设$ f[i][j] $表示前$ i $位匹配不吉利数字$ j $位时的方案数,因为每一位的转移方式都是相同的,于是用kmp预处理出转移矩阵,直接矩乘快速幂就能过了. #include<cstdio> #include<cmath> #include<cstdlib…