[NOIP2002]字串变换 T2 双向BFS】的更多相关文章

题目描述 已知有两个字串  A,B  及一组字串变换的规则(至多6个规则): A1−>B1 A2−>B2 规则的含义为:在  A$中的子串  A1可以变换为可以变换为B1.A2可以变换为可以变换为B2  -. 例如:A==′abcd′B='xyz' 变换规则为: 'abc'-> 'xu' 'ud'-> 'y' 'y'-> 'yz' 则此时,A可以经过一系列的变换变为可以经过一系列的变换变为B,其变换的过程为: 'abcd'-> 'xud'-> 'xy'->…
如果目标也已知的话,用双向BFS能很大提高速度 单向时,是 b^len的扩展. 双向的话,2*b^(len/2)  快了很多,特别是分支因子b较大时 至于实现上,网上有些做法是用两个队列,交替节点搜索 ×,如下面的伪代码:     while(!empty()) { 扩展正向一个节点 遇到反向已经扩展的return 扩展反向一个节点 遇到正向已经扩展的return } 但这种做法是有问题的,如下面的图: 求S-T的最短路,交替节点搜索(一次正向节点,一次反向节点)时 Step 1 : S –>…
65. [NOIP2002] 字串变换 时间限制:1 s   内存限制:128 MB [问题描述] 已知有两个字串A$, B$及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在A$中的子串A1$可以变换为B1$.A2$可以变换为B2$…. 例如:A$='abcd'  B$='xyz' 变换规则为:‘abc’->‘xu’ ‘ud’->‘y’ ‘y’->‘yz’ 则此时,A$可以经过一系列的变换变为B$,其变换的过程为: ‘abc…
题目描述 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ 可以变换为 B1$.A2$ 可以变换为 B2$ …. 例如:A$='abcd'B$='xyz' 变换规则为: ‘abc’->‘xu’‘ud’->‘y’‘y’->‘yz’ 则此时,A$ 可以经过一系列的变换变为 B$,其变换的过程为: ‘abcd’->‘xud’->‘xy’->‘xyz’ 共进行了三…
NOIP2002-字串变换 Description 已知有两个字串A,BA,B及一组字串变换的规则(至多66个规则): A_1A1​ ->B_1B1​ A_2A2​ -> B_2B2​ 规则的含义为:在 AA中的子串 A_1A1​ 可以变换为B_1B1​,A_2A2​ 可以变换为 B_2B2​ …. 例如:AA='abcdabcd'BB='xyzxyz' 变换规则为: ‘abcabc’->‘xuxu’‘udud’->‘yy’‘yy’->‘yzyz’ 则此时,AA可以经过一系列…
题二 字串变换 (存盘名: NOIPG2) [问题描述]: 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ 可以变换为 B1$.A2$ 可以变换为 B2$ …. 例如:A$='abcd' B$='xyz' 变换规则为: ‘abc’->‘xu’ ‘ud’->‘y’ ‘y’->‘yz’ 则此时,A$ 可以经过一系列的变换变为 B$,其变换的过程为: ‘abcd’->‘x…
这道题硬是让我用STL水过.......而且题解里说的什么双向宽搜,交替扩展............... 这道题反正,STL用就用吧,但是状态数可以卡到千亿级别,因为这个东西是阶乘扩展的,然后我们发现他的深度会极大地影响状态数,然而如果我们把深度缩小为0.5倍,那么他的状态数也就是百万级别的,所以我们可以多源搜索来进行深度优化. 由此可见多源搜索是一个方式,深度优化是一种十分有效的优化. #include <map> #include <cstdio> #include <…
65. [NOIP2002] 字串变换 ★★   输入文件:string.in   输出文件:string.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 已知有两个字串A\$, B\$及一组字串变换的规则(至多6个规则): A1\$ -> B1\$ A2\$ -> B2\$ 规则的含义为:在A\$中的子串A1\$可以变换为B1\$.A2\$可以变换为B2\$…. 例如:A\$='abcd'  B\$='xyz' 变换规则为:‘abc’->‘xu’ ‘ud…
1099 字串变换 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold   题目描述 Description 已知有两个字串 $A$, $B$ 及一组字串变换的规则(至多6个规则): $A1$ -> $B1$ $A2$ -> $B2$ 规则的含义为:在$ A$中的子串 $A1$ 可以变换为 $B1$.$A2$ 可以变换为 $B2$ …. 例如:$A='abcd' B='xyz'$ 变换规则为: $‘abc’->‘xu’ ‘u…
题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B1.A2 可以变换为 B2 …. 例如:A='abcd'B='xyz' 变换规则为: ‘abc’->‘xu’‘ud’->‘y’‘y’->‘yz’ 则此时,A 可以经过一系列的变换变为 B,其变换的过程为: ‘abcd’->‘xud’->‘xy’->‘xyz’ 共进行了三次变换,使得 A 变换为B.…