bzoj [HNOI2008]Cards】的更多相关文章

群论第一题. 发现这题也是有颜色个数限制的,所以不能用$Polya$,只能用$Burnside$ $L={\frac{1}{|G|}}{\sum_{i=1}^{m}{D(a_{i})}}$ 先$dfs$出每个循环节长度,每个循环节颜色需要一样,$dp$就好了. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> #def…
1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1668  Solved: 978[Submit][Status] Description 小 春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答 案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最…
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i,j,k) = dp(x,i-cntx,j,k)+dp(x,i,j-cntx,k)+dp(x,i,j,k-cntx)表示前x个置换红蓝绿个用了i,j,k次,cntx表示第x个置换的循环数. 然后最后乘(M+1)的乘法逆元就OK了. -----------------------------------…
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次…
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方 案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案. 两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使…
1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2928  Solved: 1754[Submit][Status][Discuss] Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出…
[BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置换加上本身的置换能构成一个置换群,两种染色方案被认为是相同的当且仅当一种方案可以通过某个置换变成另一种.求不同的染色方案数.答案对$P$取模. $sa,sb,sc\le 20,m\le 60$ 题解:这里对每种颜色都有一个限制,怎么办呢? 回顾从Burnside引理到Pólya定理的推导过程. 如果…
P1446 [HNOI2008]Cards 题目描述 小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案. 进一步,小春要求染出\(S_r\)张红色,\(S_b\)张蓝色,\(S_g\)张绿色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了\(M\)种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即…
题目链接 luogu P1446 [HNOI2008]Cards 题解 题意就是求染色方案->等价类 洗牌方式构成成了一个置换群 然而,染色数限制不能用polay定理直接求解 考虑burnside引理 对于一个置换群其等价类的个数为置换中不动点的平均数 先暴力求出置换中的轮换,然后01背包DP求出不动点方案数 代码 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm…
[bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即…
Burnside引理: 参考自 某大佬对Burnside引理和Polya定理的讲解 相关概念 群:在数学中,群表示一个拥有满足封闭性.满足结合律.有单位元.有逆元的二元运算的代数结构. 置换群:由有限集合各元素的置换所构成的群. 一个置换的形式类似于 然后是Burnside引理: (1)玄学描述 在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积. 设C1(ak)是在置换ak的作用下不动点的个数,也就是长度为1的循环的个数. 通过上述置换的变换操作后可以相等的元素属…
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b 属于 G, a * b 属于 G 2)结合律, a * b * c = a * (b * c) 3)单位元,在 G 中存在一个单位元 e ,使得对于 G 中任意的 a , a * e = e * a = a 4)逆元, 对于 G 中任意的 a ,在 G 中存在 b , 使得 a * b = e ,…
标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都快啃吐了0.0 Burnside引理:一个置换群下的等价类个数等于全部置换的不动点个数的平均值 没有接触过群论的建议去啃白书-- 网上的东西看不懂的 最后那个除法要用乘法逆元 我懒得写EXGCD写了费马小定理0.0 #include<cstdio> #include<cstring>…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https://www.cnblogs.com/nietzsche-oier/p/6883880.html https://files-cdn.cnblogs.com/files/HocRiser/Burnside.pdf bzoj 1004:这道题注意考虑单位元的那个置换. 然后用 polya 定理即可.不动点…
Description 给你一个序列,和m种可以使用多次的置换,用3种颜色染色,求方案数%p. Sol Burnside定理+背包. Burnside定理 \(N(G,\mathbb{C})=\frac {1}{\left | G \right |}\sum_{f\in G}\left |\mathbb{C}(f)  \right |\) \(\mathbb{C}\) 中非等价的着色数等于在 \(G\) 中的置换作用下保持不变的着色的平均数.<组合数学> 对于每一种置换 求出关于置换的一个有向…
好吧我就是蒟蒻根本没听说过群论(虽说听叉姐说几万年都不会考) 我也讲不太来,直接戳VFK大神的blog啦 = = http://vfleaking.blog.163.com/blog/static/17480763420119685112649/ 然后在加上2001年的论文Pólya原理及其应用 应该能做了吧= = 反正数论题就是各种小心 CODE: #include<cstdio>#include<iostream>#include<algorithm>#includ…
传送门 题意:三种颜色,规定使用每种颜色次数$r,g,b$,给出一个置换群,求多少种不等价着色 $m \le 60,\ r,g,b \le 20$ 咦,规定次数? <组合数学>上不是有生成函数做法吗.... 生成函数貌似可以和背包$DP$互相转换来着 然后就做出来了 每种置换求循环,$d[i][j][k][l]$表示前$i$个循环有了$j$个红$k$个绿$l$个蓝 遇到一点小问题,一直输出$0$ 看了黄学长的代码发现他加了一个恒等置换.... 想了一会儿才明白题目给的不是置换群,因为少了一个恒…
http://www.lydsy.com/JudgeOnline/problem.php?id=1004 学习了下polya计数和burnside引理,最好的资料就是:<Pólya 计数法的应用> --陈瑜希 burnside: $$等价类的个数=\frac{1}{|G|}\sum_{i=1}^{s}D(a_i), a_i \in G$$其中$D(a_i)=a_i置换中染色后不变的方案$ 而polya: $$D(a_i)=k^{C(a_i)},其中C(a_i)是a_i的循环节个数$$证明很简单…
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 [题意] 给你sr+sb+sg张牌,(令n=sr+sb+sg),让你把这n张牌染成3种颜色(红蓝绿),且红色sr张,蓝色sb张,绿色sg张; 同时再给你m个变化关系change[i],这里从左往右数第change[i]张牌可以移动到第i个位置; m行的变化关系每行都有n个change,即change[1..n] 然后任意两种染色的方案只有在用m个变化关系不能互相到达时才认为不同…
Description 小春现在很清闲, 面对书桌上的 \(N\) 张牌, 他决定给每张染色, 目前小春只有 \(3\) 种颜色: 红色, 蓝色, 绿色. 他询问 Sun 有 多少种染色方案, Sun 很快就给出了答案. 进一步, 小春要求染出 \(Sr\) 张红色, \(Sb\) 张蓝色, \(Sg\) 张绿色. 他又询问有多少种方 案, Sun 想了一下, 又给出了正确答案. 最后小春发明了 \(M\) 种不同的洗牌法, 这里他又问 Sun 有多少种不同的染色方案. 两种染色方法相同当且仅当…
LINK:Cards 不太会burnside引理 而这道题则是一个应用. 首先 一个非常舒服的地方是这道题给出了m个本质不同的置换 然后带上单位置换就是m+1个置换. burnside引理: 其中D(a_j)表示 在\(a_j\)这置换中的不动点的个数. 其实我们求出每个置换的不动点个数就行了. 循环很好求 每个循环都填一样的就是不动点了 直接dp一下即可. code //#include<bits/stdc++.h> #include<iostream> #include<…
http://www.lydsy.com/JudgeOnline/problem.php?id=1004 (题目链接) 题意 n张卡片,染成3种颜色,每种颜色只能染固定张数.给出一些洗牌方案,问染色方案数. Solution Burnside引理. 左转题解:LCF 代码 // bzoj1004 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #includ…
三维01背包算出在每一个置换下不变的染色方案数,Burnside引理计算答案. PS:数据太水所以只算恒等置换也是可以过的. #include<bits/stdc++.h> using namespace std; int n,m,p,x,y,z; bool u[61]; int f[21][21][21],s[61],v[61]; int power(int u,int v){ int d=1; for(;v;v>>=1){ if(v&1) d=d*u%p; u=u*u%…
枚举每个置换,求在每个置换下着色不变的方法数,先求出每个循环的大小,再动态规划求得使用给定的颜色时对应的方法数. dp[i][j][k]表示处理到当前圈时R,B,G使用量为i,j,k时的方法数,背包思想. #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #includ…
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换下相同时认为是一种.有多少种不同的排列? 思路:利用Burnside引理计算的两个步骤: (1)找出所有的置换,在这里我们很容易认为只有m种,其实是m+1种,不动置换也是一种.坑爹.. (2)求出每种置换下不动点个数.也就是对于每一种置换,我们要找出在这种置换下哪些排列在置换后还是这样.那么首先我们…
思路:由于题目给出了置换,又要求本质不同的方案数,考虑使用Burnside引理,Burnside引理即通过所有置换和原来相同的方案数之和除以方案数总数,而对于某一个置换要使置换后得到的与原来的相同,就应该把置换形成的环染成同一种颜色,也就是说属于一个环内的元素颜色一定相同,然后有一定要有一定量的红蓝绿色,因此用一个完全背包去背即可, f[i][j][k]表示选了i张红色j张蓝色k张绿色的方案数,f[i][j][k]=f[i][j][k]+f[i-sum][j][k]+f[i][j-sum][k]…
题目描述 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案. 进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绿色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种. Sun发现这个问题有点难度,决定交给你,…
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决…
置换群+dp #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #include<vector> #include<cmath> #define MAXN 65 #define ll long long #define pb push_back #define ft first #define sc second #define mp ma…
传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于这一个置换中的一个轮换,这个不动点中轮换里所有位置的颜色都必须相同. 然后题目就转化成了一个背包. #include<iostream> #include<cstdio> #include<cstdlib> #include<ctime> #include<…