Break point and VC bound】的更多相关文章

Restriction of Break Point e.g: k=2 说明在所有的dichotomy中,任意两个点不能被shatter(shatter就是能够出现所有种排列组合),即不能出现这两个点的2^k=4种组合. Bounding function B(N, k): maximum possible when break point is k. 解释这张图: 如果k=1,则不管N等于多少,B都等于1,即H set要满足只有一个点都不能被shatter,即dichotomy set的大小不…
1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个样本打散:假设空间的VC维就是它能打散的最大样本数目N.若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大: 几种假设空间的VC维如下: 2 感知机的VC维 d维感知机的vc维是d+1.(证明略) 3 VC维的物理意义 VC维表示的是做二分类时假设空间的自由度,是把数据集打散的能力.…
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学习性提供了坚实的理论基础,但有时候,特别是对我们工程师而言…
(1)定义VC Dimension: dichotomies数量的上限是成长函数,成长函数的上限是边界函数: 所以VC Bound可以改写成: 下面我们定义VC Dimension: 对于某个备选函数集H,VC Dimension就是它所能shatter的最大数据个数N.VC Dimension = minimum break point - 1.所以在VC Bound中,(2N)^(k-1)可以替换为(2N)^(VC Dimension).VC Dimension与学习算法A,输入分布P,目标…
第六讲 第五讲主要讲了机器学习可能性,两个问题,(1)\(E_{in} 要和 E_{out}\) 有很接近,(2)\(E_{in}\)要足够小. 对于第一个假设,根据Hoefding's Inequality 可以得到,\( P[|E_{in} - E_{out}| > \epsilon] < 2Mexp(-2\epsilon^2N)\) 对于上述的\(M\)来说,如果 \(M < \infty\),则当\(N\)足够大时,\(P\)会比较小,也就是坏事情出现的概率比较小,机器学习是可能…
第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD   \mathcal{D} \right ]  \leq 2M \cdot exp(-2\epsilon^2N)\) \(\Leftrightarrow  P_{\mathfrak{D}}\left [ \left | E_{out} - E_{in} \right | > \epsilon \right ]  \leq 2M \cdot exp(-2\epsilon…
​由vc bound可以知道: $P(\exists h\in H~s.t~|E_{in}(h)-E_{out}(h)|>\epsilon)\\ \leq 4M_H(2N)exp(-\frac{1}{8}\epsilon^2N)\\ \leq 4(2N)^{k-1}exp(-\frac{1}{8}\epsilon^2N)~~~if~~\exists k$ 当break point存在时,以上公式成立:1.好的H,存在break point,$M_H(N)$ 有限2.好的D,N够大3.好的算法A,…
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满足两个条件: 当假设空间\(\mathcal{H}\)的Size M是有限的时候,则\(N\)足够大的时候,对于假设空间中任意一个假设\(g\),都有\(E_{out}\approx E_{in}\) . 利用算法A从假设空间\(\mathcal{H}\)中,挑选一个\(g\),使\(E_{in}(g)\ap…
VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC…
可以把growth function m_H(N)的upper bound用N^(k-1)来限制, for N large, k>=3 Thus, 定义: VC Dimension: maximum non-break point 如果break point = k, then VC dimension = k-1 在VC Dimension上,这个Hset可以shatter某N个点,不一定是所有的N个点,但是如果N超过了VC dimension,则出现了Hset不能shatter掉的情况。 d…