Global Vectors forWord Representation】的更多相关文章

参考论文: GloVe: Global Vectors forWord Representation 参考博客:https://blog.csdn.net/coderTC/article/details/73864097 理解GloVe模型: glove 模型类似于word2vec模型,都是一种词的全局向量的表示方法. 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息. 输入:语料库 输出:词向量 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型…
I. 复习word2vec的核心思路 1. Skip-gram 模型示意图: 2.word vectors的随机梯度 假设语料库中有这样一行句子: I love deep learning and NLP 中心词为deep,那么在计算梯度的时候则可以得到如下的梯度向量. 可以很明显地看到该向量非常稀疏.常见的解决办法有两种:一是使用稀疏矩阵更新运算来更新矩阵\(U,V\)的特定的列向量.二是使用哈希来更新,即key为word string,value是对应的列向量. II. 近似 1. 负采样…
理解GloVe模型 概述 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息.输入:语料库输出:词向量方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量.开始统计共现矩阵训练词向量结束统计共现矩阵 设共现矩阵为XX,其元素为Xi,jXi,j. Xi,jXi,j的意义为:在整个语料库中,单词ii和单词jj共同出现在一个窗口中的次数. 举个栗子: 设有语料库: i love you but you love him i am sad这个小小的语…
Distributed Representation 这种表示,它最早是 Hinton 于 1986 年提出的,可以克服 one-hot representation 的缺点. 其基本想法是: 通过训练将某种语言中的每一个词映射成一个固定长度的短向量(当然这里的“短”是相对于 one-hot representation 的“长”而言的),将所有这些向量放在一起形成一个词向量空间,而每一向量则为该空间中的一个点,在这个空间上引入“距离”,则可以根据词之间的距离来判断它们之间的(词法.语义上的)相…
Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, there's a good chance it's divided into a unit on supervised learning and a unit on unsupervised learning. We certainly care about this distinction f…
转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers A curated list of the most cited deep learning papers (since 2010) I believe that there exist classic deep learning papers which are worth reading re…
An overview of gradient descent optimization algorithms Table of contents: Gradient descent variantsChallenges Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Gradient descent optimization algorithms Momentum Nesterov a…
awesome-nlp  A curated list of resources dedicated to Natural Language Processing Maintainers - Keon Kim, Martin Park Please read the contribution guidelines before contributing. Please feel free to pull requests, or email Martin Park (sp3005@nyu.edu…
继上次分享了经典统计语言模型,最近公众号中有很多做NLP朋友问到了关于word2vec的相关内容, 本文就在这里整理一下做以分享. 本文分为 概括word2vec 相关工作 模型结构 Count-based方法 vs. Directly predict 几部分,暂时没有加实验章节,但其实感觉word2vec一文中实验还是做了很多工作的,希望大家有空最好还是看一下~ 概括word2vec 要解决的问题: 在神经网络中学习将word映射成连续(高维)向量, 其实就是个词语特征求取. 特点: 1. 不…
本文简述了以下内容: 什么是词表示,什么是表示学习,什么是分布式表示 one-hot representation与distributed representation(分布式表示) 基于distributional hypothesis的词表示模型 (一)syntagmatic models(combinatorial relations):LSA(基于矩阵) (二)paradigmatic models(substitutional relations):GloVe(基于矩阵).NPLM(基…