基于winner 滤波平稳降噪效果】的更多相关文章

https://en.wikipedia.org/wiki/Wiener_filter Wiener filter solutions The Wiener filter problem has solutions for three possible cases: one where a noncausal filter is acceptable (requiring an infinite amount of both past and future data), the case whe…
Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu/~hess/)实现的这个粒子滤波.从代码入手,一下子就明白了粒子滤波的原理.根据维基百科上对粒子滤波的介绍(http://en.wikipedia.org/wiki/Particle_filter),粒子滤波其实有很多变种,Rob Hess实现的这种应该是最基本的一种,Sampling Impor…
1.背景 前段时间由于项目需求,做了一个基于GPUImage的实时美颜滤镜.现在各种各样的直播.视频App层出不穷,美颜滤镜的需求也越来越多.为了回馈开源,现在我把它放到了GitHub https://github.com/Guikunzhi/BeautifyFaceDemo 上面,感兴趣的朋友可以去下载.下面将主要介绍实现美颜滤镜的原理和思路. 2.GPUImage GPUImage 是一个开源的基于GPU的图片或视频的处理框架,其本身内置了多达120多种常见的滤镜效果.有了它,添加实时的滤镜…
简要 2010年David S. Bolme等人在CVPR上发表了<Visual Object Tracking using Adaptive Correlation Filters>一文,首次将相关滤波器引入到目标跟踪当中.该算法大幅提高了目标跟踪的性能,论文实验结果可达到669FPS的速度.这相比同期间的跟踪算法可以算是一个极大的飞跃.本文将以该论文作为分析一类基于相关滤波的目标检测算法的引子. 基于相关滤波的跟踪 MOSSE算法的创新的在于,它是第一篇将相关滤波引入到目标跟踪的领域的论文…
目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方面的问题.所以本次的代码与前几次改变比较小.当然这些code基本也是参考网上的.代码写得很不规范,时间不够,等以后有机会将其优化并整理成类的形式.)              Opencv实现粒子滤波算法            摘要 本文通过opencv实现了一种目标跟踪算法——粒子滤波算法,算法的…
目录 Canny边缘检测算法(基于OpenCV的Java实现) 绪论 Canny边缘检测算法的发展历史 Canny边缘检测算法的处理流程 用高斯滤波器平滑图像 彩色RGB图像转换为灰度图像 一维,二维高斯函数及分布 生成高斯滤波卷积核 单色高斯滤波与彩色高斯滤波 用Sobel等梯度算子计算梯度幅值和方向 梯度 图像灰度值的梯度的简单求法 使用Sobel算子来计算梯度的大小及方向: 对梯度幅值进行非极大值抑制 双阈值检测 抑制孤立低阈值点 Reference Canny边缘检测算法(基于OpenC…
作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/12071748.html 题目:带后置滤波的双通道广义旁瓣相消器(GSC)的分析 作者:Israel Cohen, Senior Member, IEEE 摘要 本文分析了非平稳噪声环境下带有后置滤波的双通道广义旁瓣相消器.后置滤波包括:检测 波束形成器的输出和参考信号处的瞬变,比较他们的瞬变功率,估计信号存在概率,估计噪声频谱以及频谱增强,以使他们对数谱的均方误差最小化.基于局部非平稳性的测量方法来检…
摘要 Siam-RPN提出了一种基于RPN的孪生网络结构.由孪生子网络和RPN网络组成,它抛弃了传统的多尺度测试和在线跟踪,从而使得跟踪速度非常快.在VOT实时跟踪挑战上达到了最好的效果,速度最高160fps. 一.研究动机 作者将流行的跟踪算法分为两类,一类是基于相关滤波类并进行在线更新的跟踪算法,另一类是使用深度特征抛弃在线更新的跟踪算法,前者严重限制了跟踪速度,后者没有使用域特定信息(即某个特定的跟踪视频的信息). 作者提出的网络分为模板支和检测支.训练过程中,在相关特征图上执行propo…
回声就是声音信号经过一系列反射之后,又听到了自己讲话的声音,这就是回声.一些回声是必要的,比如剧院里的音乐回声以及延迟时间较短的房间回声:而大多数回声会造成负面影响,比如在有线或者无线通信时重复听到自己讲话的声音(回想那些年我们开黑打游戏时,如果其中有个人开了外放,他的声音就会回荡来回荡去).因此消除回声的负面影响对通信系统是十分必要的. 针对回声消除(Acoustic Echo Cancellation,AEC )问题,现如今最流行的算法就是基于自适应滤波的回声消除算法.本文从回声信号的两种分…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人们提出了几个正定核来处理Hilbert空间中的脉冲序列.然而,在很大程度上,这种尝试仍然只是计算神经科学家和信号处理专家的好奇心.本教程说明了为什么核方法能够并且已经开始改变分析和处理脉冲序列的方式.这篇报告结合了简单的数学类比和令人信服的实际例子,试图展示正定函数量化点过程的潜力.它还详细概述了当…