题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3884 分析 扩展欧拉定理裸题 欧拉定理及证明: 如果\((a,m)=1\),则\(a^{\phi(m)} \equiv 1 \mod m\) \(Prove:\)设\(x\)取遍\(m\)的缩系,则\(ax\)取遍\(m\)的缩系,即 \[\prod x = \prod ax \mod m\] 因为这样的\(a\)有\(\phi(m)\)个 \[\prod x = \prod x *a…
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四种元素将会有655…
[BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] 否则 当\(b≥\varphi(p)\)时 \[a^b≡a^{b\%\varphi(p)+\varphi(p)}\pmod p \] 这道题里面\(2\)的无穷次方显然会比\(\varphi(p)\)大 所以,递归调用这个公式 因此每次\(p\)都会变成\(\varphi(p)\) 所以,\(\va…
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去…
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c)==1\) \(a^b\%c=a^{b\%\phi c+\phi c} gcd(b,c)!=1\) //#pragma GCC optimize(2) //#pragma GCC optimize(3) //#pragma GCC optimize(4) //#pragma GCC optimize…
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理:\(a^b\equiv a^{b\%\varphi(p)+\varphi(p)}(mod\ p)\) (a为任意整数,b,p为正整数,且\(b>\varphi(p)\)(a,p不一定要互质).证明. 指数是无穷的,但是模数是有限的,从不断减小p去考虑. 设\(f(p)=2^{2^{2^{...}}…
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; void setIO(string s) { string in=s+".in"; freopen(in.c_str(),"r",stdin); } int cnt; int phi[maxn],vis[maxn],prime[maxn]; ll qpow(ll a,l…
上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 第一行一个T,接下来T行,每行一个正整数p,代表你需要取模的值. Output T行,每行一个正整数,为答案对p取模后的值. Sample Input 3 2 3 6 Sample Output 0 1 4 HINT 对于100%的数据,T<=1000,p<=10^7 Solution 我们运用欧拉定理: 然…
Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四…
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 (题目链接) 题意 求 Solution 解决的关键: 当${n>φ(p)}$,有$${a^n≡a^{n\%φ(p)+φ(p)}~(mod~p)}$$ 然后递归log(p)次就会出解:http://blog.csdn.net/skywalkert/article/details/43955611 细节 代码 // bzoj3884 #include<algorithm> #inclu…