CountVectorizer: CountVectorizer可以将文本文档集合转换为token计数矩阵.(token可以理解成词) 此实现通过使用scipy.sparse.csr_matrix产生了计数的稀疏表示. 如果不提供一个先验字典,并且不使用进行某种特征选择的分析器,那么特征的数量将与通过分析数据得到的词汇表的大小一致. 参数: input: 默认content 可选 filename.file.content 如果是filename,传给fit的参数必须是文件名列表 如果是file…
TfidfVectorizer函数主要用于,将文档(句子)等通过 tf-idf值来进行表示,也就是用一个tf-idf值的矩阵来表示文档(句子也可). from sklearn.feature_extraction.text import TfidfVectorizer 1. 其函数源代码很长,这里只展示: class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a…
""" 理解sklearn中的CountVectorizer和TfidfVectorizer """ from collections import Counter import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer sentences = ["there is a dog dog", &…
from sklearn.feature_extraction.text import CountVectorizer texts=["dog cat fish","dog cat cat","fish bird", 'bird'] cv = CountVectorizer() cv_fit=cv.fit_transform(texts) print(cv.get_feature_names()) print(cv_fit.toarray())…
sklearn.feature_extraction.FeatureHasher(n_features=1048576, input_type="dict", dtype=<class 'numpy.float64'>, alternate_sign=True, non_negative=False): 特征散列化的实现类. 此类将符号特性名称(字符串)的序列转换为scipy.sparse矩阵,使用哈希函数计算与名称对应的矩阵列.使用的散列函数是带符号的32位版本的Murm…
Sublime text 学习资源篇 史上最性感的编辑器-sublimetext,插件, 学习资源 官网 http://www.sublimetext.com/ 插件 https://packagecontrol.io 教程 Sublime Text 全程指南 Sublime Text 2 入门及技巧 Sublime Text 使用介绍.全套快捷键及插件推荐 Sublime Text 3 学习及使用 Sublime Text 3 使用心得 Sublime Text 3 新手上路:必要的安裝.設定…
官网 http://www.sublimetext.com/ 插件 https://packagecontrol.io 教程 Sublime Text 全程指南 Sublime Text 2 入门及技巧 Sublime Text 使用介绍.全套快捷键及插件推荐 Sublime Text 3 学习及使用 Sublime Text 3 使用心得 Sublime Text 3 新手上路:必要的安裝.設定與基本使用教學 Perfect Workflow in Sublime 2 6 Ways to Tu…
sklearn.featture_extraction.DictVectorizer: 将特征与值的映射字典组成的列表转换成向量. DictVectorizer通过使用scikit-learn的estimators,将特征名称与特征值组成的映射字典构成的列表转换成Numpy数组或者Scipy.sparse矩阵. 当特征的值是字符串时,这个转换器将进行一个二进制One-hot编码.One-hot编码是将特征所有可能的字符串值构造成布尔型值.例如: 特征f有一个值ham,一个值spam,转换后会变成…
sklearn.feature_extraction.DictVectorizer:将字典组成的列表转换成向量.(将特征与值的映射字典组成的列表转换成向量) 1. 特征矩阵行代表数据,列代表特征,0表示该数据没有该特征 from sklearn.feature_extraction import DictVectorizer # 设置sparse=False获得numpy ndarray形式的结果 v = DictVectorizer(sparse=False) D = [{'foo':1, '…
1.集成学习是指对于同一个基础数据集使用不同的机器学习算法进行训练,最后结合不同的算法给出的意见进行决策,这个方法兼顾了许多算法的"意见",比较全面,因此在机器学习领域也使用地非常广泛.生活中其实也普遍存在集成学习的方法,比如买东西找不同的人进行推荐,病情诊断进行多专家会诊等,考虑各方面的意见进行最终的综合的决策,这样得到的结果可能会更加的全面和准确.另外,sklearn中也提供了集成学习的接口voting classifier. sklearn中具体调用集成学习方法的具体代码如下:…