直方图均衡化CImg实现】的更多相关文章

这篇博客是关于试用CImg库来实现灰度图和彩色图的直方图均衡化操作.感觉效果还不错,除了彩色图在均衡化时会有一定的色彩失真. C++代码实现: // // hEqualization.hpp // 直方图均衡化 // // Created by Alala on 2017/3/20. // Copyright © 2017年 Alala. All rights reserved. // #ifndef hEqualization_h #define hEqualization_h #includ…
在理解直方图均衡化的过程中,参考了一些书籍和博客,让人困惑的是,笔者对于直方图的理解还是停留在表面,并没有深入理解其内涵.因此,本文拟结合图片对直方图的概念进行阐述,并给出其Python实现,最后对她背后所蕴含的一些科学思维,谈谈自己的一些看法. 什么是直方图? 对于一副灰度图像I,她的每一个像素点I(x,y)都有一个灰度值,一般情况下可能的灰度取值有2^8=256个(0,1,...,255).如果我们统计出灰度值r在I中出现的次数n,并对其进行归一化(n/N,N是所有灰度值出现次数的总和),这…
直方图均衡化的作用是图像增强. 有两个问题比较难懂,一是为什么要选用累积分布函数,二是为什么使用累积分布函数处理后像素值会均匀分布. 第一个问题.均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不能明暗颠倒:②如果是八位图像,那么像素映射函数的值域应在0和255之间的,不能越界.综合以上两个条件,累积分布函数是个好的选择,因为累积分布函数是单调增函数(控制大小关系),并且值域是0到1(控制越界问题),所…
#include <iostream> #include "highgui.h" #include "cv.h" #include "cxcore.h" #include "math.h" using namespace std; using namespace cv; //绘制1维直方图 Mat draw1DHistogram(Mat histogramMat) { double maxVal = 0, minV…
原理: 直方图均衡化首先是一种灰度级变换的方法: 原来的灰度范围[r0,rk]变换到[s0,sk]变换函数为:s=T(r); 为便于实现,可以用查找表(look-up table)的方式存储,即:原始的灰度作为查找表的索引,表中的内容是新的灰度值. 其次,直方图均衡化是图像增强的一种基本方法,可提高图像的对比度,即:将较窄的图像灰度范围以一定规则拉伸至较大(整个灰度级范围内)的范围. 目的是在得到在整个灰度级范围内具有均匀分布的图像. 所以,当输入:直方图H(r)[此处指每个灰度级占有的像素数]…
直接上代码: #include <Windows.h> #include <iostream>// for stand I/O #include <string> // for strings #include <iomanip> // for controlling float print precision #include <sstream> // string to number conversion #include <cmath…
灰度图像--图像增强 直方图均衡化(Histogram equalization) 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:ht…
相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV和NumPy对直方图进行均衡化处理. 提示: 转载请详细注明原作者及出处,谢谢! 本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识.笔者推荐清华大学出版社的<图像处理与计算机视觉算法及应用(第2版) >,对于本节的内容,建议直接参考维基百科直方图均衡化,只需看下页面最后的两幅图就能懂了. 本文内…
我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是  是图像中全部的灰度数, 是图像中全部的像素数,  实际上是图像的直方图,归一化到 . 把  作为相应于  的累计概率函数, 定义为:  是图像的累计归一化直方图. 我们创建一个形式为  的变化,对于原始图像中的每一个值它就产生一个 ,这样  的累计概率函数就能够在全部值范围内进行线性化,转换公式定义为: 注意 T 将不同的等级映射到  域.为了将这些值映射回它们最初的域,须要在结果上应用以下的简单变换: 上面描写…
直方图均衡化在图像增强方面有着很重要的应用.一些拍摄得到的图片,我们从其直方图可以看出,它的分布是集中于某些灰度区间,这导致人在视觉上感觉这张图的对比度不高.所以,对于这类图像,我们可以通过直方图均衡技术,将图像的灰度分布变得较为均匀,从而使得图像对比度增大,视觉效果更佳. 直方图均衡化的代码实现有以下几个步骤: 遍历全图,先统计每个灰度级下的像素点个数(为此我们开辟了256大小的数组): 计算每个灰度级的像素点占总像素的点的比例: 按照第二步求出的比例重新计算每个灰度级下的新的灰度值,即均衡化…