Kernel Function--核函数收集】的更多相关文章

1 核函数K(kernel function)定义 核函数K(kernel function)就是指K(x, y) = <f(x), f(y)>,其中x和y是n维的输入值,f(·) 是从n维到m维的映射(通常,m>>n).<x, y>是x和y的内积(inner product)(也称点积(dot product)). 举个小小栗子.令 x = (x1, x2, x3, x4); y = (y1, y2, y3, y4);令 f(x) = (x1x1, x1x2, x1x…
几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个问题: 可以略过特征映射函数\(\Phi\), 只使用kernel function \(\kappa\)吗? 上一节的例子已经给出了答案, YES. 什么样的函数才能被当做kernel function来使用, 总不能只要可以将两个原始输入映射到一个实数上\(\chi^2 \to R\), 就能用…
转自 http://www.zhizhihu.com/html/y2010/2292.html Kernel Functions Below is a list of some kernel functions available from the existing literature. As was the case with previous articles, every LaTeX notation for the formulas below are readily availabl…
百度百科的解释: 常用核函数: 1.线性核(Linear Kernel): 2.多项式核(Polynomial Kernel): 3.径向基核函数(Radial Basis Function),也叫高斯核(Gaussian Kernel): 还有其他一些偏门核函数:http://blog.csdn.net/wsj998689aa/article/details/47027365…
作者:桂. 时间:2017-04-26  12:17:42 链接:http://www.cnblogs.com/xingshansi/p/6767980.html 前言 之前分析的感知机.主成分分析(Principle component analysis, PCA)包括后面看的支撑向量机(Support vector machines, SVM),都有用到核函数.核函数是将信号映射到高维,而PCA一般用来降维.这里简单梳理一下核函数的知识: 1)核函数基本概念; 2)核函数的意义; 内容为自己…
下面这张图位于第一.二象限内.我们关注红色的门,以及“北京四合院”这几个字下面的紫色的字母.我们把红色的门上的点看成是“+”数据,紫色字母上的点看成是“-”数据,它们的横.纵坐标是两个特征.显然,在这个二维空间内,“+”“-”两类数据不是线性可分的.我们现在考虑核函数,即“内积平方”.这里面是二维空间中的两个点. 这个核函数对应着一个二维空间到三维空间的映射,它的表达式是:可以验证, 在P这个映射下,原来二维空间中的图在三维空间中的像是这个样子:(前后轴为x轴,左右轴为y轴,上下轴为z轴)注意到…
一个简单的分类问题, 如图左半部分所示. 很明显, 我们需要一个决策边界为椭圆形的非线性分类器. 我们可以利用原来的特征构造新的特征: \((x_1, x_2) \to (x_1^2, \sqrt 2 x_1x_2, x_2^2)\), 如此一来, 原来的数据从二维空间被映射到了三维. 这个时候, 原来线性不可分的数据已经线性可分了: \[\frac {x_1^2}{a^2} + 0*\sqrt 2 x_1x_2 + \frac {x_2^2}{b^2} = 1\] 在二维空间里, 它是一个椭圆…
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Error, 相对误差和) MSE(Mean Squared Error, 均方误差) RMSE(Root Mean Squared Error, 均方根误差) RRSE(Root Relative Squared Error, 相对平方根误差) MAE(Mean Absolute Error, 平均绝…
support vector machines,SVM是二类分类模型.定义在特征空间上间隔最大的线性分类器,由于包括核技巧实质上成为非线性分类器.学习策略是间隔最大化,可形式化为求解凸二次规划问题(convex quadratic programming).求解算法是求解凸二次规划的最优化算法. SVM学习方法分为线性可分支持向量机(linear support vector machine in linearly separable case).线性支持向量机(linear support v…
支持向量机(support vector machines, SVM)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器:支持向量机还包括核技巧,这使它成为实质上的非线性分类器.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题,也等价于正则化的合页损失函数的最小化问.支持向量机的学习算法是求解凸二次规划的最优化算法. 支持向量机学习模型:线性可分支持向量机(linear support vec…