Spark Programming--Actions】的更多相关文章

Introduction to Core Spark Concepts driver program: 在集群上启动一系列的并行操作 包含应用的main函数,定义集群上的分布式数据集,操作数据集 通过SparkContext对象访问spark,这表示了与计算集群的连接 executors: the place to run the operations Spark automatically takes ur function and ships it to executor nodes. Pr…
Working with key/value Pairs Motivation Pair RDDs are a useful building block in many programs, as they expose operations that allow u to act on each key in parallel or regroup data across network. Eg: pair RDDs have a reduceByKey() method that can a…
转载必须注明出处:梁杰帆 在这里要先感谢原作者们!如果各位在这里发现了错误之处,请大家提出 1.Initializing Spark     Spark程序必须做的第一件事就是创建一个SparkContext对象,它告诉Spark如何访问集群.要创建SparkContext,首先需要构建一个SparkConf对象,该对象包含关于应用程序的信息.     val conf = new SparkConf().setAppName(appName).setMaster(master)     val…
Motivation Spark是基于Hadoop可用的生态系统构建的,因此Spark可以通过Hadoop MapReduce的InputFormat和OutputFormat接口存取数据. Spark所提供的上层接口有这几类: File formats and filesystems: 对于存储在本地或分布式系统的数据,比如NFS,HDFS,Amazon S3.Spark可以访问多种数据格式,包括text,JSON,SequenceFiles,protocol buffers. Structu…
参考,http://spark.incubator.apache.org/docs/latest/streaming-programming-guide.html Overview SparkStreaming支持多种流输入,like Kafka, Flume, Twitter, ZeroMQ or plain old TCP sockets,并且可以在上面进行transform操作,最终数据存入HDFS,数据库或dashboard另外可以把Spark's in-built machine le…
GraphX Programming Guide 概述 入门 属性 Graph 示例属性 Graph Graph 运算符 运算符的汇总表 Property 运算符 Structural 运算符 Join 运算符 邻域聚合 聚合消息 (aggregateMessages) Map Reduce Triplets Transition Guide (Legacy) 计算级别信息 收集相邻点 Caching and Uncaching Pregel API Graph 建造者 Vertex and E…
Spark快速入门 - Spark 1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 快速入门(Quick Start) 本文简单介绍了Spark的使用方式.首先介绍Spark的交互界面的API使用,然后介绍如何使用Java.Scala以及Python编写Spark应用.详细的介绍请阅读Spark Programming Guide. 在按照本文进行操作之前,请确保已安装Spark.本文中的所有操作没有使用HDFS,所以您可以安装任何版本的Hadoop.…
spark集群中的节点可以只处理自身独立数据库里的数据,然后汇总吗? 修改 我将spark搭建在两台机器上,其中一台既是master又是slave,另一台是slave,两台机器上均装有独立的mongodb数据库.我是否可以让它们只统计自身数据库的内容,然后将结果汇总到一台服务器上的数据库里?目前我的代码如下,但是最终只统计了master里的数据,另一个worker没有统计上. val config = new Configuration() //以下代码表示只统计本机数据库上的数据,猜测问题可能…
Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (DStreams) Input DStreams and Receivers Transformations on DStreams Output Operations on DStreams DataFrame and SQL Operations MLlib Operations Caching…
Spark Streaming核心概念与编程 1. 核心概念 StreamingContext Create StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new SparkConf().setAppName(appName).setMaster(master) //Second(1) #表示处理的批次, 当前1秒处理一次 val ssc = new Stream…
Spark Programming Guide Link:http://spark.apache.org/docs/2.2.0/rdd-programming-guide.html 每个Spark Application包含一个driver程序(运行main方法)以及在集群中执行不同的并行操作. Spark的一级抽象是RDD(2.0之后推荐使用Dataset)划分在不同节点上的元素的集合支持并行处理和自动的故障恢复. RDD的创建:(1)a file in the Hadoop file sys…
[From] https://blog.csdn.net/w405722907/article/details/77943331 Spark快速入门指南 – Spark安装与基础使用 2017年09月12日 11:35:27 阅读数:104 本教程由给力星出品,转载请注明. Apache Spark 是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象.Spark 正如其名,最大的特点就是快(Lightning-fast),可比 Hadoop MapReduce 的处理速度快 100 倍.此外…
Spark Streaming 编程指南 Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (DStreams) Input DStreams and Receivers Transformations on DStreams Output Operations on DStreams DataFrame and SQL Operations MLli…
本文主要记录我使用Spark以来遇到的一些典型问题及其解决的方法,希望对遇到相同问题的同学们有所帮助. 1. Spark环境或配置相关 Q: Sparkclient配置文件spark-defaults.conf中,spark.executor.memory和spark.cores.max应该怎样合理配置? A: 配置前,须要对spark集群中每一个节点机器的core和memory的配置有基本了解.比方由100台机器搭建的spark集群中.每一个节点的配置是core=32且memory=128GB…
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 Spark Shell 进行交互式分析 基础 Dataset 上的更多操作 缓存 独立的应用 快速跳转 本教程提供了如何使用 Spark 的快速入门介绍.首先通过运行 Spark 交互式的 shell(在 Python 或 Scala 中)来介绍 API, 然后展示如何使用 Java , Scal…
参考: http://spark.apache.org/docs/latest/programming-guide.html 后面懒得翻译了,英文记的,以后复习时再翻. 摘要:每个Spark application包含一个driver program 来运行main 函数,在集群上进行各种并行操作. RDD是Spark的核心.除了RDD,Spark的另一个抽象时并行操作中使用的两种 shared variables: broadcast variables和accumulators. Spark…
Spark集群的调度分应用间调度和应用内调度两种情况,下文分别进行说明. 1. 应用间调度 1) 调度策略1: 资源静态分区 资源静态分区是指整个集群的资源被预先划分为多个partitions,资源分配时的最小粒度是一个静态的partition. 依据应用对资源的申请需求为其分配静态的partition(s)是Spark支持的最简单的调度策略. 我们已经知道,不同的应用有各自的Spark Context且占用各自的JVM和executor(s).依据Spark Job Scheduling文档的…
http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf  ucb关于spark的论文,对spark中核心组件RDD最原始.本质的理解,没有比这个更好的资料了.必读. Abstract RDDs provide a restricted form of shared memory, based on coarse grained transformations rather than fine-grained updates to…
非常好的spark分析博客,我们team的,哈哈:http://jerryshao.me/ spark programming guide: https://github.com/mesos/spark/wiki/Spark-Programming-Guide ------------------------------------------------------------- scala安装: $ wget http://www.scala-lang.org/files/archive/s…
Filtering multiple values in multiple columns: In the case where you're pulling data from a database (Hive or SQL type db for this example) and need to filter on multiple columns, it might just be easier to load the table with the first filter, then…
尊重版权,原文:http://blog.csdn.net/macyang/article/details/7100523   - Spark是什么? Spark is a MapReduce-like cluster computing framework designed to support low-latency iterative jobs and interactive use from an interpreter. It is written in Scala, a high-le…
http://www.cnblogs.com/byrhuangqiang/p/4017725.html 为了在IDEA中编写scala,今天安装配置学习了IDEA集成开发环境.IDEA确实很优秀,学会之后,用起来很顺手.关于如何搭建scala和IDEA开发环境,请看文末的参考资料. 用Scala和Java实现WordCount,其中Java实现的JavaWordCount是spark自带的例子($SPARK_HOME/examples/src/main/java/org/apache/spark…
Spark目前支持三种开发语言:Scala.Java.Python,目前我们大量使用Python来开发Spark App(Spark 1.2开始支持使用Python开发Spark Streaming App,我们也准备尝试使用Python开发Spark Streaming App),在这期间关于数据类型的问题曾经困扰我们很长时间,故在此记录一下心路历程.   Spark是使用Scala语言开发的,Hadoop是使用Java语言开发的,Spark兼容Hadoop Writable,而我们使用Pyt…
[TOC] 前言 Spark踩坑记--初试 Spark踩坑记--数据库(Hbase+Mysql) Spark踩坑记--Spark Streaming+kafka应用及调优 在前面总结的几篇spark踩坑博文中,我总结了自己在使用spark过程当中踩过的一些坑和经验.我们知道Spark是多机器集群部署的,分为Driver/Master/Worker,Master负责资源调度,Worker是不同的运算节点,由Master统一调度,而Driver是我们提交Spark程序的节点,并且所有的reduce类…
[TOC] 前言 在Spark的使用中,性能的调优配置过程中,查阅了很多资料,之前自己总结过两篇小博文Spark踩坑记--初试和Spark踩坑记--数据库(Hbase+Mysql),第一篇概况的归纳了自己对spark的初步尝试,第二篇更多是局部在spark对于数据库的操作,而本文的思路是从spark最细节的本质,即核心的数据结构RDD出发,到整个Spark集群宏观的调度过程做一个整理归纳,从微观到宏观两方面总结,方便自己在调优过程中找寻问题,理清思路,也加深自己对于分布式程序开发的理解.(有任何…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
http://blog.csdn.net/pipisorry/article/details/53257188 弹性分布式数据集RDD(Resilient Distributed Dataset) 术语定义 l弹性分布式数据集(RDD): Resillient Distributed Dataset,Spark的基本计算单元,可以通过一系列算子进行操作(主要有Transformation和Action操作): l有向无环图(DAG):Directed Acycle graph,反应RDD之间的依…
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. 基本概念和原则 <1>  每一台host上面可以并行N个worker,每一个worker下面可以并行M个executor,task们会被分配到executor上面 去执行.Stage指的是一组并行运行的task,stage内部是不能出现shuffle的,因为shuffle的就像篱笆一样阻止了并行task的运 行,遇到shuffle就意味着到了stage的边界. <2>  CPU的c…
一. 广播变量 广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量.广播变量可被用于有效地给每个节点一个大输入数据集的副本.Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销. Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开.Spark自动地广播每个步骤每个任务需要的通用数据.这些广播数据被序列化地缓存,在运行任务之前被反序列化出来.这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式…
官网地址:http://spark.apache.org/docs/latest/streaming-programming-guide.html 一.简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级…