[POJ2891]Strange Way to Express Integers(拓展CRT) 题面 Vjudge 板子题. 题解 拓展\(CRT\)模板题. #include<iostream> #include<cstdio> using namespace std; #define ll long long #define MAX 111111 ll exgcd(ll a,ll b,ll &x,ll &y) { if(!b){x=1,y=0;return a;…
http://poj.org/problem?id=2891 (题目链接) 题意 求解线性同余方程组,不保证模数一定两两互质. Solotion 一般模线性方程组的求解,详情请见:中国剩余定理 细节 注意当最后发现方程无解直接退出时,会导致有数据没有读完,然后就会Re,所以先用数组将所有数据存下来. 代码 // poj2891 #include<algorithm> #include<iostream> #include<cstdlib> #include<cst…
题意: 给出n个模方程x=a(mod r) 求x的最小解 题解: 这就是个线性模方程组的模版题- - 但是有一些要注意的地方 extgcd算出来的解x可能负数  要让x=(x%mo+mo)%mo 而且mo不是等于lcm(r1,r2) 而是r2/gcd(r1,r2) 代码: #include <cstdio> typedef long long ll; ll n,a,r; ll extgcd(ll &x,ll &y,ll a,ll b){ if (!b){ x=,y=; retu…
中国剩余定理/扩展欧几里得 题目大意:求一般模线性方程组的解(不满足模数两两互质) solution:对于两个方程 \[ \begin{cases} m \equiv r_1 \pmod {a_1} \\ m \equiv r_2 \pmod{a_2} \end{cases} \] 我们可以列出式子 $$ a_1x+r_1=a_2y+r_2 $$ 利用扩展欧几里得解出一个可行解$M'$.那么我们就可以将两个限制条件合为一个: $$ m \equiv M' \pmod{ lcm(a_1,a_2)}…
1635:[例 5]Strange Way to Express Integers sol:貌似就是曹冲养猪的加强版,初看感觉非常没有思路,经过一番艰辛的***,得到以下的结果 随便解释下给以后的自己听:K是要求的数字 第一个读入的A1,Mod1不用改,从2开始做,把Mod2改成LCM,A2改成Ans,接着搞3 /* 原式: X = A[1] (%Mod[1]) X = A[2] (%Mod[2]) ... X = A[n] (%Mod[n]) K[1]*Mod[1]+A[1] = X K[2]…
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following: Choose k different positive integers a1, a2, -, ak. For some non-negative m, divide it by ev…
[题目链接] http://poj.org/problem?id=2891 [算法] exgcd [代码] #include <algorithm> #include <bitset> #include <cctype> #include <cerrno> #include <clocale> #include <cmath> #include <complex> #include <cstdio> #incl…
题目链接 [VJ传送门] 题目描述 给你\(a_1...a_n\)和\(m_1...m_n\),求一个最小的正整数\(x\),满足\(\forall i\in[1,n] \equiv a_i(mod \ mi)\). 分析 很显然,中国剩余定理无法解决\(m_i\)之间非互质的问题. 需要用\(exCRT\). 假设\(x\)是前\(k-1\)个方程推出来的答案,那么第一个方程可以直接得出自己的答案就是\(a_1\). 设\(M=lcm(m_1,m_2...m_{k-1})\),那么显然得到\(…
#include<bits/stdc++.h> #define ll long long using namespace std; ll n,m,a,lcm,now; bool flag; void exgcd(ll a,ll b,ll &d,ll &x,ll &y) { ) { d=a; x=; y=; } else { exgcd(b,a%b,d,x,y); ll t=x; x=y; y=t-a/b*y; } } int main() { ll d,x,y,k; w…
题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧几里德求解同余方程组的最小非负整数解.(感觉挺不容易的......+_+@) 先看前2个关系式:                       m%a1=r1 和 m%a2=r2 →                                                           …