[DB] Spark Streaming】的更多相关文章

概述 流式计算框架,类似Storm 严格来说不是真正的流式计算(实时计算),而是把连续的数据当做不连续的RDD处理,本质是离散计算 Flink:和 Spark Streaming 相反,把离散数据当成流式数据处理 基础 易用,已经集成在Spark中 容错性,底层也是RDD 支持Java.Scala.Python WordCount nc -l -p 1234 bin/run-example streaming.NetworkWordCount localhost 1234 cpu核心数必须>1,…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补充来踩,我会第一时…
Spark Streaming可以用于实时流项目的开发,实时流项目的数据源除了可以来源于日志.文件.网络端口等,常常也有这种需求,那就是实时分析处理MySQL中的增量数据.面对这种需求当然我们可以通过JDBC的方式定时查询Mysql,然后再对查询到的数据进行处理也能得到预期的结果,但是Mysql往往还有其他业务也在使用,这些业务往往比较重要,通过JDBC方式频繁查询会对Mysql造成大量无形的压力,甚至可能会影响正常业务的使用,在基本不影响其他Mysql正常使用的情况下完成对增量数据的处理,那就…
1.准备 事先在hdfs上创建两个目录: 保存上传数据的目录:hdfs://alamps:9000/library/SparkStreaming/data checkpoint的目录:hdfs://alamps:9000/library/SparkStreaming/CheckPoint_data ------------------------------------------------------ 2.源码 package stream; import java.util.Arrays;…
本节课程主要分二个部分: 一.Spark Streaming updateStateByKey案例实战二.Spark Streaming updateStateByKey源码解密 第一部分: updateStateByKey的主要功能是随着时间的流逝,在Spark Streaming中可以为每一个可以通过CheckPoint来维护一份state状态,通过更新函数对该key的状态不断更新:对每一个新批次的数据(batch)而言,Spark Streaming通过使用updateStateByKey…
1.首先将GEOIP放到服务器上,如,/opt/db/geo/GeoLite2-City.mmdb 2.新建scala sbt工程,测试是否可以顺利解析 import java.io.Fileimport java.net.InetAddressimport com.maxmind.db.CHMCacheimport com.maxmind.geoip2.DatabaseReaderimport org.json4s.DefaultFormats /** * Created by zxh on…
前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计. 本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka 在舆情项目中的应用,最后将自己在Spark Streaming+kafka 的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补…
本节课分成二部分讲解: 一.Spark Streaming on Polling from Flume实战 二.Spark Streaming on Polling from Flume源码 第一部分: 推模式(Flume push SparkStreaming) VS 拉模式(SparkStreaming poll Flume) 采用推模式:推模式的理解就是Flume作为缓存,存有数据.监听对应端口,如果服务可以链接,就将数据push过去.(简单,耦合要低),缺点是SparkStreaming…
一.Java方式开发 1.开发前准备:假定您以搭建好了Spark集群. 2.开发环境采用eclipse maven工程,需要添加Spark Streaming依赖. 3.Spark streaming 基于Spark Core进行计算,需要注意事项: 设置本地master,如果指定local的话,必须配置至少二条线程,也可通过sparkconf来设置,因为Spark Streaming应用程序在运行的时候,至少有一条线程用于不断的循环接收数据,并且至少有一条线程用于处理接收的数据(否则的话无法有…
由于streaming流程序一旦运行起来,基本上是无休止的状态,除非是特殊情况,否则是不会停的.因为每时每刻都有可能在处理数据,如果要停止也需要确认当前正在处理的数据执行完毕,并且不能再接受新的数据,这样才能保证数据不丢不重. 同时,也由于流程序比较特殊,所以也不能直接kill -9这种暴力方式停掉,直接kill的话,就有可能丢失数据或者重复消费数据. 下面介绍如何优雅的停止streaming job. 第一种:人工手动停止 程序里设置如下参数: sparkConf.set("spark.str…
一.top3热门商品实时统计案例 1.概述 Spark Streaming最强大的地方在于,可以与Spark Core.Spark SQL整合使用,之前已经通过transform.foreachRDD等算子看到, 如何将DStream中的RDD使用Spark Core执行批处理操作.现在就来看看,如何将DStream中的RDD与Spark SQL结合起来使用. 案例:每隔10秒,统计最近60秒的,每个种类的每个商品的点击次数,然后统计出每个种类top3热门的商品. 2.java案例 packag…
一.updateStateByKey 1.概述 SparkStreaming 7*24 小时不间断的运行,有时需要管理一些状态,比如wordCount,每个batch的数据不是独立的而是需要累加的,这时就需要sparkStreaming来维护一些状态, 目前有两种方案updateStateByKey&mapWithState,mapWithState是spark1.6新加入的保存状态的方案,官方声称相比updateStateByKey有10倍性能提升. updateStateByKey底层是将p…
一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.fu…
Spark Streaming状态管理函数updateStateByKey和mapWithState 一.状态管理函数 二.mapWithState 2.1关于mapWithState 2.2mapWithState示例Scala: 2.3mapWithState算子应用示例 2.4mapWithState应用示例 2.5SparkStreaming之mapWithState 三.updateStateByKey 3.1关于updateStateByKey 3.2updateStateByKey…
Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java…
Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学习.持续计算.分布式远程调用和ETL等领域. 在Storm的集群里面有两种节点:控制节点(Master Node)和工作节点(Worker Node).控制节点上面运行一个名为Nimbus的进程,它用于资源分配和状态监控:每个工作节点上面运行一个Supervisor的进程,它会监听分配给它所在机器的…
1.安装好flume2.安装好kafka3.安装好spark4.流程说明: 日志文件->flume->kafka->spark streaming flume输入:文件 flume输出:kafka的输入 kafka输出:spark 输入5.整合步骤: (1).将插件jar拷贝到flume的lib目录下 a. flumeng-kafka-plugin.jar b. metrics-annotation-2.2.0.jar (2).将配置文件producer.properties拷贝到flu…
// scalastyle:off println package org.apache.spark.examples.streaming import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ import org.apache.spark.stream…
本期内容 : BatchDuration与 Process Time 动态Batch Size Spark Streaming中有很多算子,是否每一个算子都是预期中的类似线性规律的时间消耗呢? 例如:join操作和普通Map操作的处理数据的时间消耗是否会呈现出一致的线性规律呢,也就是说,并非数据量规模越大就是简单加大BatchDuration 就可以解决问题的,数据量是一个方面,计算的算子也是一个考量的因素. 使用BatchSize来适配我们的流处理程序 : 线上的处理程序越来越重要,流入的数据…
本期内容 : Direct Acess Kafka Spark Streaming接收数据现在支持的两种方式: 01. Receiver的方式来接收数据,及输入数据的控制 02. No Receiver的方式 以上两种方式中,No Receiver的方式更符合读取.操作数据的思路,Spark作为一个计算框架他的底层有数据来源,也就是直接操作数据来源中的数据, 如果操作数据来源的话肯定需要一个封装器,这个封装的类型一定是RDD的封装类型,Spark Streaming为了封装类型推出了自定义的RD…
本期内容 : Spark Streaming中的架构设计和运行机制 Spark Streaming深度思考 Spark Streaming的本质就是在RDD基础之上加上Time ,由Time不断的运行触发周而复始的接收数据及产生Job处理数据. 一. ReceiverTracker : Receiver数据接收器的启动.接收数据过程中元数据管理,元数据管理是使用内部的RPC. 根据时间的间隔把数据分配给当前的BatchDuration : 通过Dstreams中的StreamID以及这个DStr…
本期内容 : Spark Streaming中的空RDD处理 Spark Streaming程序的停止 由于Spark Streaming的每个BatchDuration都会不断的产生RDD,空RDD有很大概率的,如何进行处理将影响其运行的效率.资源的有效使用. Spark Streaming会不断的接收数据,在不清楚接收的数据处理到什么状态,如果你强制停止掉的话,会涉及到数据不完整操作或者一致性相关问题. 一. Spark Streaming中的空RDD处理 : ForEachRDD是产生Ds…
本期内容 : UpdateStateByKey解密 MapWithState解密 Spark Streaming是实现State状态管理因素: 01. Spark Streaming是按照整个BachDuration划分Job的,每个BachDuration都会产生一个Job,为了符合业务操作的需求, 需要计算过去一个小时或者一周的数据,但是由于数据量大于BachDuration,此时不可避免的需要进行状态维护 02. Spark 的状态管理其实有很多函数,比较典型的有类似的UpdateStat…
本期内容 : Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态处理 : Spark 属于粗粒度资源分配,也就是在默认情况下是先分配好资源然后再进行计算,粗粒度有个好处,因为资源是提前给你分配好,当有计算任务的时候直接使用就可以了, 粗粒度不好的方面就是从Spark  Streaming角度讲有高峰值.低峰值,在高与低峰值时候需要的资源是不一样的,如果资源分配按照高峰值考虑的话,在低峰值就是对资源的浪费, 随着Spark Streaming…
本期内容 : Spark Streaming数据清理原理和现象 Spark Streaming数据清理代码解析 Spark Streaming一直在运行的,在计算的过程中会不断的产生RDD ,如每秒钟产生一个BachDuration同时也会产生RDD, 在这个过程中除了基本的RDD外还有累加器.广播变量等,对应Spark Streaming也有自己的对象.源数据及数据清理机制, 在运行中每个BachDuration会触发了Job ,由于会自动产生对象.数据及源数据等运行完成后肯定要自动进行回收 …
本期内容 : ReceivedBlockTracker容错安全性 DStreamGraph和JobGenerator容错安全性 Driver的安全性主要从Spark Streaming自己运行机制的角度考虑的,如对源数据保存方面使用了WAL方式,驱动层面的容错安全主要使用的是CheckPoint , 但是仅仅是WAL和CheckPoint在生成环境下不是完全足够的. Spark Streaming 的Driver容错为什么是这两个方面 : 1. ReceiverBlockTracker主要管理整…
本期内容 : Executor的WAL 消息重放 数据安全的角度来考虑整个Spark Streaming : 1. Spark Streaming会不断次序的接收数据并不断的产生Job ,不断的提交Job到集群运行,至关重要的问题接收数据安全性 2. 由于Spark Streaming是基于Spark Core基础之上的,即是说运行过程中出现错误或者故障,Spark Streaming也可以借助 Spark Core中RDD的容错的能力自动的进行恢复,恢复的前提是数据的安全可靠. 所以Execu…
Spark版本1.5.2,Flume版本:1.6 Flume agent配置文件:spool-8.51.conf agent.sources = source1 agent.channels = memoryChannel agent.sinks = sink1 agent.sources.source1.type = spooldir agent.sources.source1.spoolDir=/data/apache-flume-1.6.0-bin/spooldir agent.sourc…