【洛谷P2623物品选取】动态规划】的更多相关文章

分析 各种背包弄在一起. AC代码 // luogu-judger-enable-o2 #include <bits/stdc++.h> using namespace std; #define ms(a,b) memset(a,b,sizeof(a)) typedef long long ll; int f[2005]; int n,m; inline int read() { int x=0,w=0; char ch=0; while(!isdigit(ch)){w|=ch=='-';ch…
https://www.luogu.org/problemnew/show/P2623 https://www.luogu.org/blog/test-1/solution-p2623 重点就是甲类物品最多取一个,一定能取到最优解... #include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; #define fi first #d…
这道题我一直按照往常的思路想 f[i]为前i个任务的最大空暇时间 然后想不出来怎么做-- 后来看了题解 发现这里设的状态是时间,不是任务 自己思维还是太局限了,题做得太少. 很多网上题解都反着做,那么麻烦干嘛 设f[i]为前i时间内的最大空暇时间. 这里是更新后来的状态,和以前不一样. 如果i为某个任务的开始时间,则 f[i+t-1] = max(f[i+t-1], f[i]) 也就是继承过去,取max 如果不是的话 f[i] = max(f[i], f[i-1] + 1) 加上获得的空暇时间…
题目描述 对于一个递归函数w(a,b,c) 如果a<=0 or b<=0 or c<=0就返回值1. 如果a>20 or b>20 or c>20就返回w(20,20,20) 如果a<b并且b<c 就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c) 其它别的情况就返回w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1) 这是个简单的递归函数,但实现起来可能会有些问题.当a,b,c均为1…
显然,这是一道动归题. 我们发现,每次交换时只可能交换不同的字母(交换同类字母显然是没有意义的).那么每次交换等同于将 111 个 "j""j""j" 变为 "z""z""z",一个 zzz 变为 "j""j""j". 定义状态 dp[i][a][b]dp[i][a][b]dp[i][a][b],即考虑到第 iii 个字符,将…
没看出来动规怎么做,看到n <= 20,直接一波暴搜,过了. #include<cstdio> #include<cstring> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int MAXN = 25; int g[MAXN][MAXN], a[MAXN], f[MAXN]; int vis[MAXN],…
题目链接:https://www.luogu.com.cn/problem/P1385 题目大意: 给定一小写字母串s,每次操作你可以选择一个p(1<=p<|s|)执行下述修改中的任意一个: 将s[p]改为其字典序+1的字母,将s[p+1]改为其字典序-1的字母 或 将s[p]改为其字典序-1的字母,将s[p+1]改为其字典序+1的字母 在经过任意多次操作后,串s能变化成多少种字符串? 修改过程中必须保证s是合法的小写字母串(即不能对字母'a'进行字典序-1的操作),答案对1000000007…
题目大意:有n个山丘 , 可以在山丘上建房子 , 建房子的要求是 : 该山丘的左右山丘严格的矮于该山丘 (如果有的话),你有一架挖掘机,每单位时间可以给一个山丘挖一个单位的高度,问你想要建造 1,2,3……n/2需要多少时间 输入:n个山丘的高度 输出:分别输出建造1,2,3……个房子的代价 分析:可以易得出两个性质 1. 不可能连续两个山丘都建造房子 2.如果该山丘建造房子就不可能挖该山丘(因为要保证该山丘严格的高于附近两个山丘,如果将该山丘高度降低,只能得到不会更优的结果) 那么我们可以讲每…
题目大意: 有几座山,如果一座山左右两边的山比它矮,那么可以在这个山上建房子,你有一台挖掘机,每天可以挖一座山一米,问你需要花多少代价可以分别盖1.2.3--座房子.(给出山的数量,以及每座山的高度). 题目分析: 性质1:不会有两座相邻的山都建房子.性质 2:一座山盖房子就不会被挖,被挖就不会盖房子(两条废话) 每一座山有两种情况:建房子或者不建,可以用一维来保存([ 0 ]/[ 1 ]). 1到第 i 座山的代价和只与 i 前面的两座山有关:如果这座山( i )不建,那么他前面那座山( i-…
题目描述 ljt12138首先建了n个特斯拉电磁塔,这些电塔排成一排,从左到右依次标号为1到n,第i个电塔的高度为h[i]. 建筑大师需要从中选出一些电塔,然后这些电塔就会缩到地下去.这时候,如果留在地上的电塔的高度,从左向右构成了一个等差数列,那么这个选择方案就会被认为是美观的. 建筑大师需要求出,一共有多少种美观的选择方案,答案模998244353. 注意,如果地上只留了一个或者两个电塔,那么这种方案也是美观的.地上没有电塔的方案被认为是不美观的. 分析 题目的大致意思就是求当前数列的等差数…
洛谷-教主的花园-动态规划   题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值. 教主最喜欢3种树,这3种树的高度分别为10,20,30.教主希望这一圈树种得有层次感,所以任何一个位置的树要比它相邻的两棵树的高度都高或者都低,并且在此条件下,教主想要你设计出一套方案,使得观赏价值之和最高. 输入输出格式 输入格式: 输入文件garden.in的第1行为一个正整数n,表示需要…
[BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度为原先叶子\(+1\)的点. 那么新加入的叶子的深度的期望是未加入之前的期望+1,假设\(f_i\)为\(i\)个点的期望. 那么\(f_i=(f_{i-1}*({i-1})-f_{i-1}+2*(f_{i-1}+1))/i=f_{i-1}+2/i\) 含义就是平均的深度乘上点的个数等于深度总和,减…
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum_{i=1}^ta[e_i]}{\sum_{i=1}^tb[v_i]}< ans \\ \therefore\sum a[e_i]-ans*b[v_i]=\sum a[e_i]-ans<0 \] 则问题就变成了判断图内是否存在一个负环... 时间复杂度:\(O(nmlog)\) #include…
题目: 洛谷 4769 博客页面左下角的嘴嘴瓜封神之战中的题目 分析: 一个排列交换次数为 \(\frac{1}{2}\sum_{i=1}^{n}|i-p_i|\) 的充要条件是这个排列不存在长度为 \(3\) 的下降序列(即:最长下降子序列不超过 \(2\) ),证明 感性理解如下: 考虑如果交换次数大于 \(\frac{1}{2}\sum_{i=1}^{n}|i-p_i|\) ,那么一定存在至少一个元素「绕路」了. 必要性 :「绕路」分为如下两种情况: 第一,某个元素的目标位置在它左侧,但它…
洛谷题目链接 题目赋值出来格式有问题,所以我就只放题目链接了 下面为ac代码 #include<bits/stdc++.h> #define ll long long using namespace std; +; ll a[maxn];//存放输入的数据 ll f[maxn];//用来递推 int main() { ll n; cin>>n; ;i<=n;i++) scanf("%lld",&a[i]);//输入数据 ;i<=n;i++)…
题目:洛谷4158 分析: 这题一看就是动态规划. 可以看出,如果每个木条粉刷的次数是固定的,那么这些木条是互不干扰的,因此对于每个木条可以通过dp来求出把T次中的j次分配给这个木条时可以获得的最大正确数,然后再dp出如何分配这T个粉刷次数可以获得最优解(类似于背包). 针对这个思路设计两个状态: \(dp1[i][j]\)表示一个木条的前\(i\)个格子被粉刷j次时最大正确数 \(dp2[i][j]\)表示前i个木条粉刷\(j\)次时最大正确数 \(dp1\)能够这样设计的理由是:刷前\(a\…
这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有个好处, 避免了总的树枝个数的枚举 #include<cstdio> #include<algorithm> #include<vector> #include<cstring> #define REP(i, a, b) for(int i = (a); i &…
动态规划 洛谷P1616 疯狂的采药 同样也是洛谷的动态规划一个普及-的题目,接下来分享一下我做题代码 看到题目,没很认真的看数据大小,我就提交了我的代码: 1 //动态规划 洛谷P1616 疯狂的采药 2 #include<iostream> 3 #include<cmath> 4 using namespace std; 5 int value[10005];//价值数组 6 int times[10005];//时间数组 7 int dp[10000003];//t的范围1e…
洛谷P1048 [NOIP2005 普及组] 采药 洛谷的一个谱架-的题目,考的是01背包问题,接下来分享一下我的题解代码. AC通过图: 我的代码: 1 //动态规划 洛谷P1048 [NOIP2005 普及组] 采药 2 #include<iostream> 3 #include<cmath> 4 using namespace std; 5 int value[105];//价值数组 6 int times[105];//时间数组 7 long long dp[1000];…
一个洛谷普及-的题目,也是我刚刚入门学习动态规划的练习题. 下面发一下我的思路和代码题解: 我的思路及伪代码: 我的AC图: 接下来上代码: 1 //动态规划 洛谷P1802 五倍经验日 2 #include<iostream> 3 #include<cmath> 4 using namespace std; 5 struct human 6 { 7 int l;//失败 8 int w;//胜利 9 int u;//use 10 }hu[1005]; 11 long long a…
洛谷P4017 最大食物链计数 这是洛谷一题普及/提高-的题目,也是我第一次做的一题 图上动态规划/拓扑排序 ,我认为这题是很好的学习拓扑排序的题目. 在这题中,我学到了几个名词,入度,出度,及没有环的有向图必定有入度为0的点.通过与题干分析可知,入度为0就是最佳生产者,出度为0就是最佳消费者.题干的大意就是找出图中一共有几条食物链是从最佳生产者指向最佳消费者. 我在题解区学习了拓扑排序后的第一次题解,然而只过了一个测试点,一片WA声.. 1 //动态规划 洛谷P4017 最大食物链计数 2 #…
洛谷题目传送门 神仙思维题还是要写点东西才好. 建立数学模型 这种很抽象的东西没有式子描述一下显然是下不了手的. 因为任何位置都以\(k\)为周期,所以我们只用关心一个周期,也就是以下数都在膜\(k\)意义下. 设\(a_i\)表示\(i\)号区间长度: 对于上行列车(\(0\rightarrow n\))设\(p_0\)表示出发时刻,\(p_i(i\ge1)\)表示在\(i\)站停靠时间: 对于下行列车(\(0\leftarrow n\))设\(-q_0\)表示到站时刻,\(q_i(i\ge1…
洛谷题目传送门 又是一年联赛季.NOIP2017至此收官了. 这个其实是比较套路的图论DP了,但是细节有点恶心. 先求出\(1\)到所有点的最短路\(d1\),和所有点到\(n\)的最短路\(dn\). 设\(f_{i,j}\)表示\(i\)号点,所有与\(d1\)差距不超过\(j\)的路径条数.转移的时候肯定是从小到大枚举\(j\),再枚举边转移.显然每条边都有一个\(\Delta\)值,为\(d1_x-d1_y+w\),含义就是强制经过这条边的最短路长度相较于原最短路长度的增量.于是有转移式…
原文链接https://www.cnblogs.com/zhouzhendong/p/9258043.html 题目传送门 - 洛谷P3953 题目传送门 - Vijos P2030 题意 给定一个有向图,有 $n$ 个节点 $m$ 条边,边权值 $\in[0,1000]$ . 小明要从 $1$ 走到 $n$ ,要求路径长度最大为 $d+k$ ,其中 $d$ 为 $1$ 到 $n$ 最短路长度. 问小明有多少种走法,答案对 $p$ 取模.如果有无数种走法,那么输出 $-1$ . $n\leq 1…
原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html 题目传送门 - BZOJ4553 题目传送门 - 洛谷P4093 题解 设$Li$表示第$i$个位置最小值,$Ri$表示最大值$vi$表示原值. 那么如果$i$能到$j$这个位置,则满足: $i<j$ $rj\leq xi$ $xi\leq li$ 于是CDQ分治水过. 代码 #include <bits/stdc++.h> using namespace std; const…
洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要想点办法,不失一般性也能快捷地判定决策单调. 对于判定决策单调的分析 再补一句决策单调性的概念:状态转移方程形如\(f_i=\min/\max_{j=1}^{i-1} g_j+w_{i,j}\),且记\(f_i\)的最优决策点为\(p_i\)(也就是\(f_i\)从\(g_{p_i}+w_{i,p_…
洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f_i\)为安排前\(i\)个人的最大值\((f_0=0)\) \(f_i=\max\limits_{j=0}^{i-1}\{f_j+a(x_i-x_j)^2+b(x_i-x_j)+c\}\) \(\quad=\max\limits_{j=0}^{i-1}\{f_j-2ax_ix_j+ax_j^2-b…
洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是直接并购,这一块对答案没有任何贡献. 我们先把这些给去掉,具体做法可以是,按高为第一关键字,宽为第二关键字从大到小排序,然后上双指针扫一遍. 于是,剩下的就是一个高度递减.宽度递增的矩形序列.考虑怎样制定它们的并购方案会最优.显然如果要并购,一定要挑序列中的一段区间,这样贡献答案的就只有最左边矩形的…
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. \[f_{i,j}=\min\limits_{k=1}^{i}\{f_{k,j-1}+w_{k,i}\}\] 显然\(j\)这一维可以滚掉,于是变成\(g_i=\min\limits_{k=1}^{i}\{f_k+w_{k,i}\}\)做\(m\)遍(题目中的\(k\)) 这又是一个决策单调性优化…
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 \[p_i\ge a_j-a_i+\sqrt{|i-j|}\] \[p_i=\max\limits_{j=1}^n\{a_j+\sqrt{|i-j|}\}-a_i\] 绝对值看着很不爽,我们把它拆开 \[p_i=\max(\max_{j=1}^i\{a_j+\sqrt{i-j}\},\max_{j…