<数据结构>图的最小生成树】的更多相关文章

目录 最小生成树问题 Prim算法:点贪心 基本思想:类Dijstra 伪代码 代码实现 复杂度分析:O(VlogV + E) kruskal算法:边贪心 基本思想: 充分利用MST性质 伪代码 代码实现 复杂度分析:O(ElogE) 算法选择 最小生成树问题 最小生成树问题(Mininum Spanning Tree MST): 在给定无向图中,确定一棵树T,满足三个条件:a.包含图的所有顶点:b.边都是图的边:c.整棵树的边权之和最小 MST的性质: 包含n-1个结点:连通:树不唯一(最小边…
接上文,研究了一下算法之后,发现大话数据结构的代码风格更适合与前文中邻接矩阵的定义相关联,所以硬着头皮把大话中的最小生成树用自己的话整理了一下,希望大家能够看懂. 一.最小生成树 1,问题 最小生成树要解决的是带权图 即 网 结构的问题,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小.可以广泛应用在修路建桥.管线运输.快递等各中网络方面.我们把构造连通图的最小代价生成树成为最小生成树. 最小生成树有两个算法 普里姆算法和克鲁斯卡尔算法 2,普里姆算法 (1)普里姆算法的思路…
还是畅通工程 Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submission(s) : 5   Accepted Submission(s) : 3 Font: Times New Roman | Verdana | Georgia Font Size: ← → Problem Description 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省…
数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中.不妨换个思路,为何不一开始就将所有边中权值最小的边取出来搭建二叉树?这里说的最小权值是全局的最小权值,而Prim说的最小权值,是已经访问过的顶点的周围的边中的最小权值,这个范围当然比全部边要小. 于是需要对边按照权值升序排列,由于每次取出的最小权值分布在图的各个地方,一开始各条边可能并不是相连的,…
数据结构与算法--最小生成树之Prim算法 加权图是一种为每条边关联一个权值或称为成本的图模型.所谓生成树,是某图的一棵含有全部n个顶点的无环连通子图,它有n - 1条边.最小生成树(MST)是加权图的一棵权值和(所有边的权值相加之和)最小的生成树. 要注意以下几点: 最小生成树首先是一个生成树,所以我们研究的是无环连通分量: 边的权值可能是0也可能是负数 边的权值不一定表示距离,还可以是费用等 加权无向图的实现 之前图的实现都没有考虑权值,而权值存在于边上,所以最好是将"边"这个概念…
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以把边上的权值解释为线路的造价.则最小生成树表示使其造价最小的生成树. 构造网的最小生成树必须解决下面两个问题: 1.尽可能选取权值小的边,但不能构成回路: 2.选取n-1条恰当的边以连通n个顶点: MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集.若(u,v)是一条具有最小权值的…
1.图的最小生成树(贪心算法) 我两个算法的输出都是数组表示的,当前的索引值和当前索引对应的数据就是通路,比如parent[2] = 5;即2和5之间有一个通路,第二个可能比较好理解,第一个有点混乱 是什么? 将一个有权图中的 所有顶点 都连接起来,并保证连接的边的 总权重最小,即最小生成树,最小生成树不唯一 为什么? 传入邻接矩阵,返回可以生成最小生成树的数据 我们有两种方式生成图的最小生成树1.普里姆(Prim)算法2.克鲁斯卡尔(Kruskal)算法 怎样做? 图片参考博客:https:/…
1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数少时效率会非常高,所以对于稀疏图有很大的优势. Prim 算法针对顶点展开,对于稠密图,即边数非常多的情况下会更好. 具体代码如下: /* Graph.h头文件 */ /*包含图的建立:图的深度优先遍历.图的广度优先遍历*/ /*包含图的最小生成树:Prim 算法.Kruskal 算法*/ #inc…
本文主要参考自<算法>. 加权图是一种为每条边关联一个权值或是成本的图模型.这种图能够自然地表示许多应用.在一幅航空图中,边表示航线,权值则可以表示距离或是费用.在一幅电路图中,边表示导线,权值则可能表示导线的长度即成本,或是信号通过这条线路所需的时间.在这些情形中,最令人感兴趣的自然是将成本最小化. 图的生成树是它的一棵含有其所有顶点的无环连通子图.一幅加权图的最小生成树(Minimum Spanning Tree, MST)是它的一棵权值(树中所有边的权值之和)最小的生成树. 下方中我们主…
1,摘要: 本系列文章主要学习如何使用JAVA语言以邻接表的方式实现了数据结构---图(Graph),这是第一篇文章,学习如何用JAVA来表示图的顶点.从数据的表示方法来说,有二种表示图的方式:一种是邻接矩阵,其实是一个二维数组:一种是邻接表,其实是一个顶点表,每个顶点又拥有一个边列表.下图是图的邻接表表示. 从图中可以看出,图的实现需要能够表示顶点表,能够表示边表.邻接表指是的哪部分呢?每个顶点都有一个邻接表,一个指定顶点的邻接表中,起始顶点表示边的起点,其他顶点表示边的终点.这样,就可以用邻…