正题 题目链接:https://www.luogu.com.cn/problem/P4491 题目大意 给\(n\)个物品染上\(m\)种颜色,若恰好有\(k\)个颜色的物品个数为\(S\)那么就会产生\(W_k\)的贡献.求所有染色方案的贡献和 \(1\leq n\leq 10^7,1\leq m\leq 10^5,1\leq S\leq 150\) 解题思路 先考虑一个简单的想法,我们强制染上\(k\)种颜色,那么方案就是 \[F(k)=\binom{m}{k}\frac{P_n^{k\ti…
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度. 小 C 希望知道对于所有可…
题目链接:洛谷 题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$. 数据范围:$n\leq 10^7,m\leq 10^5,S\leq 150,0\leq W_i\leq 1004535808$ 首先是要推式子的. 首先我们知道,出现次数恰为$S$次的至多$up=\min(m,\frac{n}{S})$种. 设恰好出现$S$次的颜色至少$i$种,则 $$f_i=C_m^i*\f…
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度. 小 C 希望知道对于所有可能的染色方案, 他能获得的愉悦度的和对 \(1…
LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac{n!}{(s!)^k}\frac{(m-k)^{n-sk}}{(n-sk)!}\) 设\(f_k\)表示恰好有k个颜色是满足的 那么有 \(f_k=\sum_{j=k}C(j,k)(-1)^{j-k}g_j\) 前者可以直接求 后者需要卷积一下. 坑点:模数不是998244353 是1004535…
传送门 这一类题都要考虑推式子 首先推出题目要求的式子,枚举正好有\(s\)个颜色的种类(范围\([0,p=min(\lfloor\frac{n}{s}\rfloor,m)]\)),然后对于后面的颜色可能也有数量为\(s\)的,容斥一下即可,即\[ans=\sum_{k=0}^{p}w_k*\binom{m}{k}*\binom{n}{ks}*\frac{(ks)!}{(s!)^k}\sum_{i=0}^{p-k}(-1)^i*\binom{m-k}{i}*\binom{n-ks}{is}*\f…
显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种颜色选\(i\)种,所以乘一个\(C_m^i\) 然后这n个位置分成\(i+1\)个部分:被钦定的\(i\)种颜色,每个有\(S\)个:剩下的\(m-i\)种颜色,一共\(n-iS\)个.先看作是可重的全排列数,那么方案就有\(\frac{n!}{(S!)^i(n-iS)!}\)种.前\(i\)各部…
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\dfrac 1 {(n-Sx)!} \] \(f(x)\) 钦定有\(x\)种颜色出现了恰好\(S\)的方案 然后推一下恰好有\(x\)种颜色出现了恰好\(S\)次的方案\(g(x)\) .推导在下下面. 最后的答案是\(\sum w_i g(i)\) 推导: 显然颜色种类不会超过\(L=\lfloo…
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制\(j\)种颜色恰好出现\(S\)次,其他颜色随意染的方案数.可以通过生成函数知道 \(\begin{align*} c_j &= \binom{m}{j} n! [x^n] (\frac{x^k}{k!})^j (\sum\limits_{i=0}^\infty \frac{x^i}{i!})^{m…
Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出.$n \le 10^9,k \le 200000$ 化学学考时含义推式子+手动打表找规律得到了一个$O(nlogn)$的式子开心的很我以为我要AC了回来看数据范围就升天了. 问NC大神这题用到了什么:斯特林数/伯努利数.然后就自闭了学了一天的知识点还去做了点…