正题 题目链接:https://uoj.ac/problem/33 题目大意 给出\(n\)个点的一棵树 定义\(f(x,y)=gcd(\ dis(x,lca),dis(y,lca)\ )\). 对于每个\(i\)求有多少对\(f(x,y)=i(x<y)\) \(1\leq n\leq 10^5\) 解题思路 首先肯定是枚举\(lca\)节点,然后看他子树里的情况,比较麻烦的是\(gcd\)刚刚好是\(d\),但是其实我们可以是\(d\)的倍数的情况,然后后面再容斥出答案. 如果,然后暴力算的话…
「WC2010」重建计划(长链剖分/点分治) 题目描述 有一棵大小为 \(n\) 的树,给定 \(L, R\) ,要求找到一条长度在 \([L, R]\) 的路径,并且路径上边权的平均值最大 \(1 \leq n,L,R \leq 10^5\) 解题思路 : 前几天沉迷初赛来写几道数据结构恢复一下代码能力,坑填完之后可能就要开始啃思维题了QwQ. 这个题貌似长链剖分和点分复杂度都是 \(O(nlog^2n)\) 的,点分好久都没碰了,长链剖分也只有暑假里口胡了几个多校的题而已,先讲做法吧 这个题…
题目大意: 就是给你一棵以1为根的树,询问每一个节点的子树内节点数最多的深度(相对于这个子树根而言)若有多解,输出最小的. 解题思路: 这道题用树链剖分,两种思路: 1.树上DSU 首先想一下最暴力的算法:统计子树每个深度节点的个数(桶)相当于以每个节点为根遍历子树搜索一遍答案,这样做时间复杂度是O(n2),显然过不去. 考虑一下优化.假如说我们模拟一下搜索答案的过程,我们发现在每一次暴搜时都会在桶中添加一些答案.而这些答案的整体只会对该节点及其祖先产生贡献,也就是说,只有该节点以及其祖先的桶中…
题面 Bzoj 洛谷 题解 首先把最短路径树建出来(用\(Dijkstra\),没试过\(SPFA\)\(\leftarrow\)它死了),然后问题就变成了一个关于深度的问题,可以用长链剖分做,所以我们用点分治来做(滑稽). 有一点要说,这一题数据比较水,如果不用字典序的话,也可以过.如何建立字典序呢?其实我们从\(1\)号节点开始遍历路径树(不是最短路径树),令一个点的第一关键字是点权,如果点权相等就按照编号大小为第二关键字,维护一个二元组就好了. 点分治时记两个数组\(S[i]\)和\(nu…
题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. 我们像做dsu on tree一样先做重儿子,用线段树继承重儿子的全部信息,然后做其他轻儿子 查询的时候枚举一下路径的长度len,一边单点O(1)O(1)O(1)查询长度为len的最大权值,一边线段树O(logn)O(logn)O(logn)查询长度为[L-len,R-len]的区间即可 时间复杂度…
[UOJ#33][UR #2]树上GCD(长链剖分,分块) 题面 UOJ 题解 首先不求恰好,改为求\(i\)的倍数的个数,最后容斥一下就可以解决了. 那么我们考虑枚举一个\(LCA\)位置,在其两棵不同的子树中选择两个点,那么贡献就是这两段的\(gcd\). 那么发现要统计的东西类似于\(u\)的子树中,深度为\(d\)的点的个数,这个可以很容易的用长链剖分来维护,那么维护出这个数组之后就可以\(O(\log {dep})\)的对于贡献进行计算.然而这个复杂度是假的,因为你每次都需要一次\(O…
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 看完题目,一般人都能想到 容斥稳了 .这样我们只要统计有多少点对满足gcd是i的倍数. 考虑长链剖分,每次合并的时候,假设我已经求出轻儿子子树内每一个距离的点的数量,我们需要先对这个序列做一个变换,把每个数变成下标是它倍数的数的和. 然后枚举轻儿子到这个点距离dis,这样答案加上现在这棵树内已经计算的部分中 到这个点的距离是dis的倍数的数的和. 考虑分块,对于dis>=k的,暴力做.对于dis<=k的,我们顺便维护数组f[i]…
求树上最长链:两遍搜索. 第一次从树上任意点开始,最远点必然是某一条最长链上的端点u. 第二次从u开始,最远点即该最长链的另一端点. 先在最长链上走,不足再去走支链. 把询问数m错打成n,狠狠wa了一次= = #include<stdio.h> #include<string.h> ; struct E{ int v,next; }e[MAXN<<]; struct Q{ int p,c; }q[MAXN]; int tol; int head[MAXN]; int v…
HDU#4607. Park Visit 题目描述 Claire and her little friend, ykwd, are travelling in Shevchenko's Park! The park is beautiful - but large, indeed. N feature spots in the park are connected by exactly (N-1) undirected paths, and Claire is too tired to visi…
F. Dominant Indices 题意: 给一颗无向树,根为1.对于每个节点,求其子树中,哪个距离下的节点数量最多.数量相同时,取较小的那个距离. 题目: 这类题一般的做法是树上的启发式合并,复杂度是O(nlogn).但由于这题所求的信息与深度有关,因此可以使用长链剖分的技巧,复杂度可以是O(n). 长链剖分可以维护以深度为下标的信息.先预处理,以深度为依据,标记长儿子.维护答案时,对于每个节点,O(1)继承其长儿子的信息.然后暴力合并其他儿子.则时间复杂度是所有长链的长度之和,即O(n)…