sklearn-adaboost】的更多相关文章

1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归. AdaBoostClassifier使用了两种Adaboost分类算法的实现,SAMME和SAMME.R.而AdaBoostRegressor则使用了我们原理篇里讲到的Adaboost回归算法的实现,即Adaboost.R…
DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4581651.html 本例是Sklearn网站上的关于决策树桩.决策树.和分别使用AdaBoost—SAMME和AdaBoost—SAMME.R的AdaBoost算法在分类上的错误率.这个例子基于Sklearn.datasets里面的make_Hastie_10_2数据库.取了12000个数据,其…
一.集成学习与Boosting 集成学习是指将多个弱学习器组合成一个强学习器,这个强学习器能取所有弱学习器之所长,达到相对的最佳性能的一种学习范式. 集成学习主要包括Boosting和Bagging两种学习框架.Boosting是一种将弱学习器提升为强学习器的算法,所以也叫提升算法. 以分类问题为例,给定一个训练数据集,训练弱分类器要比训练强分类器相对容易很多,从第一个弱分类器开始,Boosting通过训练多个弱分类器,并在训练过程中不断改变训练样本的概率分布,使得每次训练时算法都会更加关注上一…
In the previous post we addressed some issue of decision tree, including instability, lack of smoothness, sensitivity to data, and etc. One solution is Boosting Method. In simple words Boosting combines multiple weak learners to get a powerful predic…
在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做一个总结. 1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归. AdaBo…
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting参数详解2 如何调参? 2.1 调参的目标:偏差和方差的协调 2.2 参数对整体模型性能的影响 2.3 一个朴实的方案:贪心的坐标下降法 2.3.1 Random Forest调参案例:Digit Recognizer 2.3.1.1 调整过程影响类参数 2.3.1.2 调整子模型影响类参数 2.3.2 Gr…
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? 3.2 bagging的偏差和方差 3.3 boosting的偏差和方差 3.4 模型的独立性 3.5 小结4 Gradient Boosting 4.1 拟合残差 4.2 拟合反向梯度 4.2.1 契机:引入损失函数 4.2.2 难题一:任意损失函数的最优化 4.2.3 难题二:无法对测试样本计算反向梯度…
近期的事务与sklearn有关,且主要用到了分类.在此做一点笔记 进行分类大概涉及三个知识点: 一. 分类器 二.特征选择 三.模型选择 一.分类器(Classification) 实例一:plot_classifier_comparison.py # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import…
转:http://www.cnblogs.com/jasonfreak/p/5657196.html 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? 3.2 bagging的偏差和方差 3.3 boosting的偏差和方差 3.4 模型的独立性 3.5 小结4 Gradient Boosting 4.1 拟合残差 4.2 拟合反向梯度 4.2.1 契机:引入损失函数 4.2.2 难题一:任意损失函数的最优化 4.2.3 难题二:无法对测试样本计算反向梯度 4.…
转:http://www.cnblogs.com/jasonfreak/p/5720137.html 目录 1 Random Forest和Gradient Tree Boosting参数详解2 如何调参? 2.1 调参的目标:偏差和方差的协调 2.2 参数对整体模型性能的影响 2.3 一个朴实的方案:贪心的坐标下降法 2.3.1 Random Forest调参案例:Digit Recognizer 2.3.1.1 调整过程影响类参数 2.3.1.2 调整子模型影响类参数 2.3.2 Gradi…