Dynamic attention in tensorflow】的更多相关文章

新代码在contrib\seq2seq\python\ops\attention_decoder_fn.py 和之前代码相比 不再采用conv的方式来计算乘,直接使用乘法和linear 给出了两种attention的实现 传统的"bahdanau": additive (Bahdanau et al., ICLR'2015) Neural Machine Translation by Jointly Learning to Align and Translate 以及"luo…
论文地址:基于动态注意的递归网络单耳语音增强 论文代码:https://github.com/Andong-Li-speech/DARCN 引用格式:Li, A., Zheng, C., Fan, C., Peng, R., Li, X. (2020) A Recursive Network with Dynamic Attention for Monaural Speech Enhancement. Proc. Interspeech 2020, 2422-2426 摘要 听觉动态注意理论已经…
v1.0中 tensorflow渐渐废弃了老的非dynamic的seq2seq接口,已经放到 tf.contrib.legacy_seq2seq目录下面. tf.contrib.seq2seq下面的实现都是dynamic seq2seq接口. 按照google的rd说法下个月将会给出更加完善的接口和实现. 当前版本也可以使用这里尝试分析一下现有dynamic seq2seq的代码.     首先核心函数是seq2seq.py下面的 dynamic_rnn_decoder     这里首先看下dy…
目前实现了基于tensorflow的支持的带attention的seq2seq.基于tf 1.0官网contrib路径下seq2seq 由于后续版本不再支持attention,迁移到melt并做了进一步开发,支持完全ingraph的beam search(更快速) 以及outgraph的交互式beam search(更灵活),其中ougraph的beam search支持alignments的输出. attention的可视化也就是alignments的展示如下图(输入句子预测用户可能的搜索词)…
Effective TensorFlow Table of Contents TensorFlow Basics Understanding static and dynamic shapes Scopes and when to use them Broadcasting the good and the ugly Feeding data to TensorFlow Take advantage of the overloaded operators Understanding order…
1.seq2seq:分为encoder和decoder a.在decoder中,第一时刻输入的是上encoder最后一时刻的状态,如果用了双向的rnn,那么一般使用逆序的最后一个时刻的输出(网上说实验结果比较好) b.每一时刻都有一个输出,即:[batch_size,  decoder_output_size],经过一个MLP后,都跟词汇表中的每一个词都对应了一个概率,即: [batch_size, vocab_size]. c.将每一个时刻的输出拼接起来,那么就是[batch_size, de…
attention: 时序的刻画 attention 在recommendation 中的应用: 年龄的增长, 对于商品的喜好 Dynamic attention deeo model:…
Control flow operations: conditionals and loops When building complex models such as recurrent neural networks you may need to control the flow of operations through conditionals and loops. In this section we introduce a number of commonly used contr…
论文信息 论文标题:How Attentive are Graph Attention Networks?论文作者:Shaked Brody, Uri Alon, Eran Yahav论文来源:2022,ICLR论文地址:download 论文代码:download 1 Abstract 在 GAT中,每个节点都为它的邻居给出自己的查询表示.然而,在本文中证明了 GAT 计算的是一种非常有限的注意类型:注意力分数在查询节点上是无条件的.本文将其定义为静态注意力,并提出了相应的动态注意力 GATv…
[论文阅读] RNN 在阿里DIEN中的应用 0x00 摘要 本文基于阿里推荐DIEN代码,梳理了下RNN一些概念,以及TensorFlow中的部分源码.本博客旨在帮助小伙伴们详细了解每一步骤以及为什么要这样做. 0x01 背景知识 1.1 RNN RNN,循环神经网络,Recurrent Neural Networks. 人们思考问题往往不是从零开始的,比如阅读时我们对每个词的理解都会依赖于前面看到的一些信息,而不是把前面看的内容全部抛弃再去理解某处的信息.应用到深度学习上面,如果我们想要学习…
注意:论文中,很多的地方出现baseline,可以理解为参照物的意思,但是在论文中,我们还是直接将它称之为基线,也 就是对照物,参照物. 这片论文中,作者没有去做实际的实验,但是却做了一件很有意义的事,他收罗了近些年所有推荐系统中涉及到深度学习的文章 ,并将这些文章进行分类,逐一分析,然后最后给出了一个推荐系统以后的发展方向的预估. 那么通过这篇论文,我们可以较为 系统的掌握这些年,在推荐系统方面,深度学习都有那些好玩的应用,有哪些新奇的方法,下面是论文的一个粗糙翻译: 概述:   随着互联网上…
MachineLN博客目录 https://blog.csdn.net/u014365862/article/details/78422372 本文为博主原创文章,未经博主允许不得转载.有问题可以加微信:lp9628(注明CSDN). 公众号MachineLN,邀请您扫码关注: MachineLP的Github(欢迎follow):https://github.com/MachineLP train_cnn_v0: 实现基础cnn训练,数据读取方式慢. train_cnn_v1: 优化数据读取的…
Recurrent Neural Network 2016年07月01日  Deep learning  Deep learning 字数:24235   this blog from: http://jxgu.cc/blog/recent-advances-in-RNN.html    References Robert Dionne Neural Network Paper Notes Baisc Improvements 20170326 Learning Simpler Language…
论文地址:两阶段深度网络的解耦幅度和相位优化 论文代码: 引用格式:Li A, Liu W, Luo X, et al. ICASSP 2021 deep noise suppression challenge: Decoupling magnitude and phase optimization with a two-stage deep network[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Spee…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/267 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
Tensorflow 实现 A Tensorflow implementation of CapsNet(Capsules Net) in Hinton's paper Dynamic Routing Between Capsules 项目地址:https://github.com/naturomics/CapsNet-Tensorflow Keras 实现 A Keras implementation of CapsNet in Hinton's paper Dynamic Routing B…
一.关于Attention,关于NMT 未完待续... 以google 的 nmt 代码引入 探讨下端到端: 项目地址:https://github.com/tensorflow/nmt 机器翻译算是深度学习在垂直领域应用最成功的之一了,深度学习在垂直领域的应用的确能解决很多之前繁琐的问题,但是缺乏范化能力不足,这也是各大公司一直解决的问题: 最近开源的模型: lingvo:一种新的侧重于sequence2sequence的框架: bert   :一种基于深度双向Transform的语言模型预训…
tensorflow基于 Grammar as a Foreign Language实现,这篇论文给出的公式也比较清楚. 这里关注seq2seq.attention_decode函数, 主要输入 decoder_inputs, initial_state, attention_states,     这里可以主要参考 models/textsum的应用,textsum采用的多层双向lstm, 假设只有一层,texsum将正向 最后输出的state作为 attention_decode的输入ini…
python3.6,tensorflow1.11 测试代码: tensorflow在eager模式下进行测试,方便调试,查看中间结果 import tensorflow as tf tf.enable_eager_execution() batch_size = 4 input = tf.random_normal(shape=[3, batch_size, 6], dtype=tf.float32) cell = tf.nn.rnn_cell.BasicLSTMCell(10, forget_…
#-*-coding:utf8-*- __author = "buyizhiyou" __date = "2017-11-21" import random, time, os, decoder from PIL import Image import numpy as np import tensorflow as tf import pdb import decoder import random ''' 在汉字ocr项目中,利用基于attention的enco…
论文地址:https://arxiv.org/abs/1710.10903 代码地址: https://github.com/Diego999/pyGAT 之前非稀疏矩阵版的解读:https://www.cnblogs.com/xiximayou/p/13622283.html 我们知道图的邻接矩阵可能是稀疏的,将整个图加载到内存中是十分耗费资源的,因此对邻接矩阵进行存储和计算是很有必要的. 我们已经讲解了图注意力网络的非稀疏矩阵版本,再来弄清其稀疏矩阵版本就轻松了,接下来我们将来看不同之处.…
Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sept. 8 2016 Citation: Olah & Carter, 2016 Recurrent neural networks are one of the staples of deep learning, allowing neural networks to work with seque…
Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目,根据自己的需求进行开发. 很多内容下面这个英文项目: Inspired by https://github.com/jtoy/awesome-tensorflow 官方网站 官网:https://www.tensorflow.org/ 中文:https://tensorflow.google.cn/…
什么是TensorFlow? TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU).服务器.移动设备等等.TensorFlow 最初由Google Brain 小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器…
Learning Dynamic Memory Networks for Object Tracking  ECCV 2018Updated on 2018-08-05 16:36:30 Paper: arXiv version Code: https://github.com/skyoung/MemTrack (Tensorflow Implementation) [Note]This paper is developed based on Siamese Network and DNC(Na…
Adam Kosiorek About Attention in Neural Networks and How to Use It this blog comes from: http://akosiorek.github.io/ml/2017/10/14/visual-attention.html  Oct 14, 2017 Attention mechanisms in neural networks, otherwise known as neural attention or just…
Awesome TensorFlow  A curated list of awesome TensorFlow experiments, libraries, and projects. Inspired by awesome-machine-learning. What is TensorFlow? TensorFlow is an open source software library for numerical computation using data flow graphs. I…
本文是针对谷歌Transformer模型的解读,根据我自己的理解顺序记录的. 另外,针对Kyubyong实现的tensorflow代码进行解读,代码地址https://github.com/Kyubyong/transformer 这里不会详细描述Transformer的实现机理,如果有不了解Transformer的可以先阅读文章<Attention is all you need>,以及我列出的一些参考博客,都是不错的解读. Layer Normalization 首先是Layer Norm…
Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目,根据自己的需求进行开发. 很多内容下面这个英文项目: Inspired by https://github.com/jtoy/awesome-tensorflow 官方网站 官网:https://www.tensorflow.org/ 中文:https://tensorflow.google.cn/…
Report processing of Microsoft Dynamic AX 版权声明:本文为博主原创文章,未经博主允许不得转载. The implementation of a general electronic report usually has four classes. Contract: Comment: Contract class is data contract class for SSRS report . Intent: Gets or sets the value…