#-*- coding: utf-8 -*- #餐饮销量数据相关性分析 计算相关系数 from __future__ import print_function import pandas as pd catering_sale = '../data/catering_sale_all.xls' #餐饮数据,含有其他属性 data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列 print("相关系数矩阵,即…
百度到<金庸小说全集 14部>全(TXT)作者:金庸 下载下来,然后读取内容with open('names.txt') as f: data = [line.strip() for line in f.readlines()] novels = data[::2] names = data[1::2] novel_names = {k: v.split() for k, v in zip(novels, names)} //可以在这里打印下看是不是都读取过 //开始分词并加载 for _,…
最近常听同事提及相关性分析,正巧看到这个google的开源库,并把相关操作与调试结果记录下来. 输出结果: 比较有意思的巧合是黄蓉使出打狗棒,郭靖就用了降龙十八掌,再后测试了名词的解析. 小说集可以百度<金庸小说全集 14部>全(TXT)作者:金庸 下载下来.需要整理好格式,门派和武功名称之间需要有换行符,留意删除掉最后一行的空白区域.下载完成后可以用自己习惯的工具或程序做相应调整,因语料内容太长,博客里面不允许"堆砌",所以没复制上来,有需要的可以再联系. with op…
对“Gary.csv”中的成绩数据进行统计量分析 用cor函数来计算相关性,method默认参数是用pearson:并且遇到缺失值,use默认参数everything,结果会是NA 相关性分析 当值r>1时,正相关,一个变量增加或减少时,另一个变量也相应增加或减少 当值r=1时,无相关,说明两个变量相互独立,有一个变量值无法预测另一个变量值 当值r<1时,负相关,一个变量增加或减少时,另一个变量也相应减少或增加 相关系数取值范围限于: -1 <= r <= +1 好严格的对称性 如…
#-*- coding: utf-8 -*- #餐饮销量数据统计量分析 from __future__ import print_function import pandas as pd catering_sale = '../data/catering_sale.xls' #餐饮数据 data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列 data = data[(data[u'销量'] > 400)&…
不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mllib数理统计…
Edited by Markdown Refered from: John Ladd, Jessica Otis, Christopher N. Warren, and Scott Weingart, "Exploring and Analyzing Network Data with Python," The Programming Historian 6 (2017), https://programminghistorian.org/en/lessons/exploring-an…
大数据与科学计算  库名称 简介 pycuda/opencl GPU高性能并发计算 Pandas python实现的类似R语言的数据统计.分析平台.基于NumPy和Matplotlib开发的,主要用于数据分析和数据可视化,它的数据结构DataFrame和R语言里的data.frame很像,特别是对于时间序列数据有自己的一套分析机制,非常不错. Open Mining 商业智能(BI),Pandas的Web界面. blaze NumPy和Pandas大数据界面. SciPy 开源的Python算法…
分享点干货!!! Python数据抓取分析 编程模块:requests,lxml,pymongo,time,BeautifulSoup 首先获取所有产品的分类网址: def step(): try: headers = { ..... } r = requests.get(url,headers,timeout=30) html = r.content soup = BeautifulSoup(html,"lxml") url = soup.find_all(正则表达式) for i…
目录 1 准备工作 2 具体实施   1 准备工作 什么是Redis? Redis:一个高性能的key-value数据库.支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用:提供string.list.set.zset.hash等数据结构的存储,并支持数据的备份. 本文适合使用的场景:当一个项目中Redis缓存的数据量逐渐增大,Redis缓存的数据占用内存也会越来越大,而且其中有很多很可能是价值不大的数据.由于Redis是一个key-value数据库,所以对其中的数…