培训系列5--spark 的 RDD 的 reduce方法使用 1.spark-shell环境下准备数据 val collegesRdd= sc.textFile("/user/hdfs/CollegeNavigator.csv")val header= collegesRdd.first val headerlessRdd= collegesRdd.filter( line=>{ line!= header } ) 2.准备学生数的map val countStuMap= he…
学习了之前的rdd的filter以后,这次来讲spark的map方式 1.获得文件 val collegesRdd= sc.textFile("/user/hdfs/CollegeNavigator.csv")val header= collegesRdd.first 2.通过filter获得纯粹的数据 val headerlessRdd= collegesRdd.filter( line=>{ line!= header } ) 3.查看一下实际数据格式 scala> h…
通过hdfs或者spark用户登录操作系统,执行spark-shell spark-shell 也可以带参数,这样就覆盖了默认得参数 spark-shell --master yarn --num-executors 2 --executor-memory 2G --driver-memory 1536M 默认值得设置一般在/etc/spark/conf/spark-env.sh里面设置 一.通过array数组自动获得 1.枚举生成数组 val arr=Array(1,2,3,4,5,6,7)…
一.做基础数据准备 这次使用fights得数据. scala> val flights= sc.textFile("/user/hdfs/data/Flights/flights.csv")flights: org.apache.spark.rdd.RDD[String] = /user/hdfs/data/Flights/flights.csv MapPartitionsRDD[3] at textFile at <console>:24 scala> val…
一.如何处理RDD的filter 1. 把第一行的行头去掉 scala> val collegesRdd= sc.textFile("/user/hdfs/CollegeNavigator.csv")collegesRdd: org.apache.spark.rdd.RDD[String] = /user/hdfs/CollegeNavigator.csv MapPartitionsRDD[3] at textFile at <console>:24 scala>…
// dataframe is the topic 一.获得基础数据.先通过rdd的方式获得数据 val ny= sc.textFile("data/new_york/")val header=ny.firstval filterNY =ny.filter(listing=>{ listing.split(",").size==14 && listing!=header }) //因为后面多是按照表格的形式来处理dataframe,所以这里增加…
1.前期数据准备(同之前的章节) val collegesRdd= sc.textFile("/user/hdfs/CollegeNavigator.csv")val header= collegesRdd.first val headerlessRdd= collegesRdd.filter( line=>{ line!= header } ) 2.获得map val typeMapCount= headerlessRdd.map(line=>{val strtype=l…
//groupbykey 一.准备数据val flights=sc.textFile("data/Flights/flights.csv")val sampleFlights=sc.parallelize(flights.take(1000))val header=sampleFlights.firstval filteredFlights=sampleFlights.filter(line=>{ line!=header&&line.split(",&…
一,选择数据库,这里使用标准mysql sakila数据库 mysql -u root -D sakila -p 二.首先尝试把表中的数据导入到hdfs文件中,这样后续就可以使用spark来dataframe或者rdd来处理数据 sqoop import --connect "jdbc:mysql://host03.xyy:3306/sakila" --username root --password root --table rental --target-dir "Sqo…
一.获得最初的数据并形成dataframe val ny= sc.textFile("data/new_york/")val header=ny.firstval filterNY =ny.filter(listing=>{ listing.split(",").size==14 && listing!=header })val nyMap= filterNY.map(listing=>{ val listingInfo=listing.…