An elegant and powerful method for finding maximum likelihood solutions for models with latent variables is called the expectation-maximization algorithm, or EM algorithm. If we assume that the data points are drawn independently from the distributio…
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta distribution(Conjugate Prior of Bernoulli distribution) The parameters a and b are often called hyperparameters because they control the distribution of…
x, a vector, and all vectors are assumed to be column vectors. M, denote matrices. xT, a row vcetor, T means transpose of a vector or matrix. (w1 , . . . , wm ), a row vector with m elements, and the corresponding column vector is written as w = (w1 …
1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Functions which are linear in the unknow parameters. Polynomail is a linear model. For the Polynomail curve fitting problem, the models is : which is a linear…
一.最小化误差函数拟合 正则化( regularization )技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值.这种惩罚项最简单的形式采用所有系数的平方和的形式.这推导出了误差函数的修改后的形式: 在效果上, λ 控制了模型的复杂性,因此决定了过拟合的程度. 二.贝叶斯曲线拟合 1.正态分布( normal distribution )或者高斯分布( Gaussian distribution ) 对于一元实值变量 x ,高斯分布被定义为: 它由两个参数控制:\(μ\) ,被叫做…
本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. 书中首先对回归问题给出了一个简短的不那么正式的定义: Given a training data set comprising \(N\) observations \(\{x_n\}\), where \(n = 1, ... , N\), together with corresponding targ…
To summarize, principal component analysis involves evaluating the mean x and the covariance matrix S of the data set and then finding the M eigenvectors of S corresponding to the M largest eigenvalues. If we plan to project our data onto the first M…
强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 术语和数学符号 时序差分学习简话 时序差分学习结合了动态规划和蒙特卡洛方法,是强化学习的核心思想. 时序差分这个词不…
本文内容包含以下章节: Chapter 2 AI Methods Chapter 2.1 General Notes 本书英文版: Artificial Intelligence and Games - A Springer Textbook 这个章节主要讨论了在游戏中经常用到的一些基础的人工智能算法.这些算法大部分都出现在一些人工智能和机器学习的入门书籍中.在讲解算法在游戏中的应用的时候,会以吃豆人(Ms Pac-Man)作为样例,讲解怎么用行为树算法,树搜索算法,监督学习算法,无监督学习算法…