为什么有logistics函数】的更多相关文章

直观地看: 如果是softmax函数,我想有跟多的选择方向吧…
广义线性模型 y是分类变量 Link function:将分类变量和数值变量放在一起 使用得到结果0 or 1的概率值来评估选0 or1 函数关系: 正比例函数: logistics函数S型曲线: Odds ratio反应事件发生的倾向性 logistics函数与probit regression function很像,但是logistics函数基于二项分布,probit regression function基于正态分布. probit regression function:正态分布的累计概…
BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 下图为一典型的多层神经网络. 通常一个多层神经网络由L层神经元组成,其中:第1层称为输入层,最后一层(第L层)被称为输出层,其它各层均被称为隐含层(第2层~第L-1层). 令输入向量为: \[ \vec x = [x_1 \quad x_2 \quad \ldots \quad x_i \quad…
参考文献: http://www.blogjava.net/zhenandaci/archive/2009/03/01/257237.html http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988406.html NG的SVM课件 台湾大学林轩田老师的视频课程 注意1:本文自然过渡并引出核函数的概念,比课件和其他教程上的说明更加让人理所当然地接受! 注意2:貌似对于SVM原问题求解,很多地方直接采用KKT条件求解.实际上,它也是通过求解…
逻辑斯蒂回归 关注公众号"轻松学编程"了解更多. [关键词]Logistics函数,最大似然估计,梯度下降法 1.Logistics回归的原理 利用Logistics回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类.这里的"回归" 一词源于最佳拟合,表示要找到最佳拟合参数集. 训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法.接下来介绍这个二值型输出分类器的数学原理. Logistic Regression和Linear Reg…
本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ---------------------------------- 一.logit值的来源 逻辑回归一般将因变量二分类变量的0-1转变为频率[0,1],变成odds(优势比,[0,+∞]),然后log一下成为Logit值([-∞,+∞]) 优势比就是:odds=P(y=1)/P(y=0) logit值:logit=log(odds) 什么是sigmoid函数? 先定…
https://blog.csdn.net/zhy8623080/article/details/73188671  也即softmax公式…
多元回归方程:假设有一个因变量y和一组自变量x1, x2, x3, ... , xn,其中y为连续变量,我们可以拟合一个线性方程: y =β0 +β1*x1 +β2*x2 +β3*x3 +...+βn*xn 如果y为二分类变量,只能取值0或1,那么线性回归方程就会遇到困难: 方程右侧是一个连续的值,取值为负无穷到正无穷,而左侧只能取值[0,1],无法对应.为了继续使用线性回归的思想,统计学家想到了一个变换方法,就是将方程右边的取值变换为[0,1].最后选中了Logistic函数:逻辑回归,可以说…
警告:本文为小白入门学习笔记 网上下载的数据集链接:https://pan.baidu.com/s/1NwSXJOCzgihPFZfw3NfnfA 密码: jmwz 不知道这个数据集干什么用的,根据直观分析应该属于分类问题,有两个变量X1和X2,Y取值非零即一,用MATLAB分析发现第二列对Y的影响较为明显 大致以8为分界线,8右边Y值为0,8左边Y为1. 首先假设舍去属性X1,设数据集为(X2,Y).然后分别用线性回归(Liner regression)和逻辑回归(logistics regr…
警告:本文为小白入门学习笔记 由于之前写过详细的过程,所以接下来就简单描述,主要写实现中遇到的问题. 数据集是关于80人两门成绩来区分能否入学: 数据集: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html 假设函数(hypothesis function):   ----------------------------------…