电竞大数据时代,数据对比赛的观赏性和专业性都起到了至关重要的作用.同样的,这也对电竞数据的丰富性与实时性提出了越来越高的要求. 电竞数据的丰富性从受众角度来看,可分为赛事.战队和玩家数据:从游戏角度来看,维度可由英雄.战斗.道具以及技能等组成:电竞数据的实时性包括赛前两支战队的历史交战记录.赛中的实时比分.胜率预测.赛后比赛分析和英雄对比等. 如果你想了解大数据的学习路线,想学习大数据知识以及需要免费的学习资料可以加群:784789432.欢迎你的加入.每天下午三点开直播分享基础知识,晚上2…
http://blog.csdn.net/jacktan/article/details/9200979 大数据的热度在持续的升温,继云计算之后大数据成为又一大众所追捧的新星.我们暂不去讨论大数据到底是否适用于您的组织,至少在互联网上已经被吹嘘成无所不能的超级战舰.好像一夜之间我们就从互联网时代跳跃进了大数据时代!关于到底什么是大数据,说真的,到目前为止就和云计算一样,让我总觉得像是在看电影<云图>——云里雾里的感觉.或许那些正在向你推销大数据产品的公司会对您描绘一幅乌托邦似的美丽画面,但是您…
大数据的热度在持续的升温,继云计算之后大数据成为又一大众所追捧的新星.我们暂不去讨论大数据到底是否适用于您的组织,至少在互联网上已经被吹嘘成无所不能的超级战舰.好像一夜之间我们就从互联网时代跳跃进了大数据时代!关于到底什么是大数据,说真的,到目前为止就和云计算一样,让我总觉得像是在看电影<云图>——云里雾里的感觉.或许那些正在向你推销大数据产品的公司会对您描绘一幅乌托邦似的美丽画面,但是您至少要保持清醒的头脑,认真仔细的慎问一下自己,我们公司真的需要大数据吗? 做为一家第三方支付公司,数据的确…
Kafka前世今生 随着大数据时代的到来,数据中蕴含的价值日益得到展现,仿佛一座待人挖掘的金矿,引来无数的掘金者.但随着数据量越来越大,如何实时准确地收集并分析如此大的数据成为摆在所有从业人员面前的难题. 为了解决大数据流式处理中面临的巨大数据吞吐量的难题,LinkedIn公司开发了Kafka作为其活动流和运营数据处理的消息管道.作为全球最大的职业社交网站,LinkedIn会员人数在世界范围内已超过3亿,Kafka作为一款消息服务,为其系统数据的稳定运行做出了巨大的贡献,因此Kafka的性能和可…
Dbus所支持两类数据源的实现原理与架构拆解. 大体来说,Dbus支持两类数据源: RDBMS数据源 日志类数据源 一.RMDBMS类数据源的实现 以mysql为例子. 分为三个部分: 日志抽取模块 增量转换模块 全量拉取模块 1.1 日志抽取模块(Extractor) mysql 日志抽取模块由两部分构成: canal server:负责从mysql中抽取增量日志. mysql-extractor storm程序:负责将增量日志输出到kafka中,过滤不需要的表数据,保证at least on…
目前市场上常见的企业级大数据平台型的产品主流的有两个,一个是Cloudera公司推出的CDH,一个是Hortonworks公司推出的一套HDP,其中HDP是以开源的Ambari作为一个管理监控工具,CDH对应的是Cloudera Manager,国内也有像星环这种公司专门做大数据平台.我们公司最初是使用CDH的环境,近日领导找到我让我基于Ambari做一个公司自己的数据平台产品.最初接到这个任务我是拒绝的,因为已经有了很完善很成熟的数据平台产品,小公司做这个东西在我看来是浪费人力物力且起步太晚.…
今天我们来看一下淘宝.美团和滴滴的大数据平台,一方面进一步学习大厂大数据平台的架构,另一方面也学习大厂的工程师如何画架构图.通过大厂的这些架构图,你就会发现,不但这些知名大厂的大数据平台设计方案大同小异,架构图的画法也有套路可以寻觅. 淘宝大数据平台 淘宝可能是中国互联网业界较早搭建了自己大数据平台的公司,下图是淘宝早期的 Hadoop 大数据平台,比较典型. 淘宝的大数据平台基本也是分成三个部分,上面是数据源与数据同步:中间是云梯 1,也就是淘宝的 Hadoop 大数据集群:下面是大数据的应用…
本项目主要讲解了一套应用于互联网电商企业中,使用Java.Spark等技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为.页面跳转行为.购物行为.广告点击行为等)进行复杂的分析.用统计分析出来的数据,辅助公司中的PM(产品经理).数据分析师以及管理人员分析现有产品的情况,并根据用户行为分析结果持续改进产品的设计,以及调整公司的战略和业务.最终达到用大数据技术来帮助提升公司的业绩.营业额以及市场占有率的目标. 1.课程研发环境 开发工具: Eclipse Linux:CentOS 6…
如今,数据分析能力正逐渐成为企业发展的标配,企业通过数据分析的过程将数据中的信息提取出来,进行处理.识别.加工.呈现,最后成为指导企业业务发展的知识和智慧.而处理.识别.加工.呈现的过程从本质上来讲,就是实现对数据的采集.清洗.加工.加载.建模分析,再到可视化的过程.  大数据平台的通用架构 1. 数据采集 采集是指集中企业待分析的原始数据的过程,例如可能是包含但不限于以下: - 企业服务器的日志: - 企业各种信息系统的数据(CRM/ERP/数据库): - 企业的网站/App/小程序等客户端的…
2016-07-29 14:13:23 钱曙光 阅读数 794 原文链接:https://blog.csdn.net/qiansg123/article/details/80124521 声明:本文为作者在CSDN技术公开课的分享原创整理,未经许可,禁止转载. 作者:郭炜,易观CTO,毕业于北京大学,曾任联想大数据总监.万达电商数据部总经理,曾在中金.IBM.Teradata公司担任大数据方向重要岗位.在智能硬件以及大数据分析领域具有丰富的理论和实践经验. 责编:钱曙光,关注架构和算法领域,寻求…