spark mllib和ml类里面的区别】的更多相关文章

mllib是老的api,里面的模型都是基于RDD的,模型使用的时候api也是有变化的(model这里是naiveBayes), (1:在模型训练的时候是naiveBayes.run(data: RDD[LabeledPoint])来训练的,run之后的返回值是一个NaiveBayesModel对象,就可以使用NaiveBayesModel.predict(testData: RDD[Vector]): RDD[Double] 里面不仅可以传入一个RDD[Vector] ,里面还可以传入单个Vec…
package ML.DataType; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.linalg.*; import org.apache.spark.mllib.linalg.distributed.*; import or…
1:Spark ML与Spark MLLIB区别? Spark MLlib是面向RDD数据抽象的编程工具类库,现在已经逐渐不再被Spark团队支持,逐渐转向Spark ML库,Spark ML是面向DataFrame编程的. 2:Spark ML与Spark MLLIB中矩阵.向量定义区别? 这两个类库中的矩阵与向量对比可以发现几乎都是一样的,就是为了以后维护Spark ML方便. 3:Spark ML中稀疏向量与稠密向量区别? 稠密向量存储:底层存储使用完成的Double Array存储. 稀…
原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Learning),相信很多计算机从业者都会对这个技术方向感到兴奋.然而学习并使用机器学习算法来处理数据却是一项复杂的工作,需要充足的知识储备,如概率论,数理统计,数值逼近,最优化理论等.机器学习旨在使计算机具有人类一样的学习能力和模仿能力,这也是实现人工智能的核心思想和方法.传统的机器学习算法,由于技术和…
机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.其目标是使实际的机器学习可扩展和容易.在高层次上,它提供了如下工具: ML算法:通用学习算法,如分类,回归,聚类和协同过滤 特征提取,特征提取,转换,降维和选择 管道:用于构建,评估和调整ML管道的工具 持久性:保存和加载算法,模型和管道 实用程序:线性代数,统计,数据处理等 公告:基于DataFrame的API是主要的API MLlib基于RDD的API现在处于维护模式. 从Spark 2.0开始,包中的基于RDD的AP…
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新技能,并重组已学习的知识结构使之不断改善自身. MLlib是Spark提供的可扩展的机器学习库.MLlib已经集成了大量机器学习的算法,由于MLlib涉及的算法众多,笔者只对部分算法进行了分析,其余算法只是简单列出公式,读者如果想要对公式进行推理,需要自己寻找有关概率论.数理统计.数理分析等方面的专…
基于Spark Mllib的文本分类 文本分类是一个典型的机器学习问题,其主要目标是通过对已有语料库文本数据训练得到分类模型,进而对新文本进行类别标签的预测.这在很多领域都有现实的应用场景,如新闻网站的新闻自动分类,垃圾邮件检测,非法信息过滤等.本文将通过训练一个手机短信样本数据集来实现新数据样本的分类,进而检测其是否为垃圾消息,基本步骤是:首先将文本句子转化成单词数组,进而使用 Word2Vec 工具将单词数组转化成一个 K 维向量,最后通过训练 K 维向量样本数据得到一个前馈神经网络模型,以…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said t…
1. 概述 1.1 功能 MLlib是Spark的机器学习(machine learing)库,其目标是使得机器学习的使用更加方便和简单,其具有如下功能: ML算法:常用的学习算法,包括分类.回归.聚类和过滤: 特征:特征萃取.转换.降维和选取: Pipelines:其是一个工具,目标是用于构建.测量和调节: 使用工具:包括线性代数.统计学习和数据操作等等. 1.2 API架包 MLlib有两个API架包: 1) Spark.mllib:基于RDD的API包,在spark 2.0时已经进入维护模…
决策树类模型 ml中的classification和regression主要基于以下几类: classification:决策树及其相关的集成算法,Logistics回归,多层感知模型: regression:决策树及其相关集成算法,线性回归. 主要的模型有两类:线性模型(GLM)和决策树: 其中决策树的算法都调用了org.apache.spark.ml.tree.impl.RandomForest,没有和mllib中的代码复用,但是代码逻辑几乎一样. MLlib的决策树训练算法和传统的算法不同…