spark stream简介】的更多相关文章

1.复杂的迭代计算 假如我们计算的需要100步的计算,但是当我执行到第99步的时候,突然数据消失, 根据血统,从头进行恢复,代价很高 sc.setCheckpointDir("共享存储文件系统的路径") //这些地址存储已经执行过的rdd 2.离线计算和实时计算 storm(实时计算) Flink -> Scala spark-Streaming(实时计算,时效性低于storm,但吞吐量大) kafka(消息队列,高吞吐),其实就相当于有很多数据源过来,但是如果一时处理不过来,则…
.NET Core/.NET之Stream简介   之前写了一篇C#装饰模式的文章提到了.NET Core的Stream, 所以这里尽量把Stream介绍全点. (都是书上的内容) .NET Core/.NET的Streams 首先需要知道, System.IO命名空间是低级I/O功能的大本营. Stream的结构 .NET Core里面的Stream主要是三个概念: 存储(backing stores 我不知道怎么翻译比较好), 装饰器, 适配器. backing stores是让输入和输出发…
看的这个学习课程: http://study.163.com/course/courseLearn.htm?courseId=1002887002#/learn/video?lessonId=1003360187&courseId=1002887002 Spark Stream其实是把数据分成一段一段的进行处理.小批量处理方式. 按时间段分成一个个Dstream,每个Dstream是由相同时间段的多个RDD组成. 两者的区别: 1. 最大的区别,是Spark Streaming不可能完成毫秒级响…
简介: SparkStreaming是一套框架. SparkStreaming是Spark核心API的一个扩展,可以实现高吞吐量的,具备容错机制的实时流数据处理. 支持多种数据源获取数据: Spark Streaming接收Kafka.Flume.HDFS等各种来源的实时输入数据,进行处理后,处理结构保存在HDFS.DataBase等各种地方. Dashboards:图形监控界面,Spark Streaming可以输出到前端的监控页面上. *使用的最多的是kafka+Spark Streamin…
原文引自:http://www.cnblogs.com/shishanyuan/p/4700615.html 1.简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Sp…
1.针对国外的开源技术,还是学会看国外的英文说明来的直接,迅速,这里简单贴一下如何看: 2.进入到flume的conf目录,创建一个flume-spark-push.sh的文件: [hadoop@slaver1 conf]$ vim flume-spark-push.sh 配置一下这个文件,flume使用avro的. # example.conf: A single-node Flume configuration # Name the components on this agent #定义这…
离线计算和实时计算对比 1)数据来源 离线:HDFS历史数据 数据量比较大 实时:消息队列(Kafka),实时新增/修改记录过来的某一笔数据 2)处理过程 离线:MapReduce: map+reduce 实时:Spark(DStream/SS) 3)处理速度 离线:慢 实时:快速 4)进程 离线:启动+销毁 实时:7*24,永不停止的 实时流处理框架对比 1)Apache Storm http://storm.apache.org open source distributed realtim…
在一个application内部,不同线程提交的Job默认按照FIFO顺序来执行,假设线程1先提交了一个job1,线程2后提交了一个job2,那么默认情况下,job2必须等待job1执行完毕后才能执行,如果job1是一个长作业,而job2是一个短作业,那么这对于提交job2的那个线程的用户来说很不友好:我这个job是一个短作业,怎么执行了这么长时间. 使用spark的公平调度算法可以在一定程度上解决这个问题,此时,job2不必等待job1完全运行完毕之后就可以获得集群资源来执行,最终的效果的就是…
原文地址:http://blog.jobbole.com/?p=89446 我是在2013年底第一次听说Spark,当时我对Scala很感兴趣,而Spark就是使用Scala编写的.一段时间之后,我做了一个有趣的数据科学项目,它试着去 预测在泰坦尼克号上幸存.对于进一步了解Spark内容和编程来说,这被证明是一个很好的方式.对于任何有追求的.正在思考如何着手的Spark开发人员,我都非常推荐这个项目. 今天,Spark已经被很多巨头使用,包括Amazon.eBay以及Yahoo!.很多组织都在拥…
RDD工作原理: 主要分为三部分:创建RDD对象,DAG调度器创建执行计划,Task调度器分配任务并调度Worker开始运行. SparkContext(RDD相关操作)→通过(提交作业)→(遍历RDD拆分stage→生成作业)DAGScheduler→通过(提交任务集)→任务调度管理(TaskScheduler)→通过(按照资源获取任务)→任务调度管理(TaskSetManager) 举例:以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的…