complexHeatmap包画分类热图】的更多相关文章

用途:一般我们画热图是以连续变量作为填充因子,complexHeatmap的oncopoint函数可以以类别变量作为填充因子作热图. 用法:oncoPrint(mat, get_type = function(x) x,alter_fun = alter_fun_list, alter_fun_list = NULL, col,row_order = oncoprint_row_order(),column_order = oncoprint_column_order(),show_column…
画直线图 1.最简单的用法: import matplotlib.pyplot as plt import numpy as np x=np.linspace(-3,3,50) #在(-1,1)范围内生成50个数,等分的, y=2*x+1 #一张图里画一条线 plt.figure() #如果是一张图里只有一条线,则使用它与不使用他差别不大,如果是在一张图里有2条或多条线,则使用它可以把两条线放在一个图里. plt.plot(x,y) plt.show() 2.有的时候需要在一张图里画两条或多条线…
一:导入R包及需要画热图的数据 library(pheatmap) data<- read.table("F:/R练习/R测试数据/heatmapdata.txt",head = T,row.names=1,sep="\t") 二:画图 1)pheatmap(data)#默认参数 2)pheatmap(data,clustering_distance_rows = "correlation")#聚类线长度优化 3)pheatmap(data…
这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/ppg2008.csv 首先查看一下数据文件的前5行: Name G MIN PTS FGM FGA FGP FTM FTA FTP ... \ 0 Dwyane Wade 79 38.6 30.2 10.8 22.0 0.491 7.5 9.8 0.765 ... 1 LeBron James 81 37.7 28.4 9.7 1…
相信很多人都看到过上面这种方块图,有点像"华夫饼图"的升级版,也有点像"热图"的离散版.我在一些临床多组学的文章里面看到过好几次这种图,用它来展示病人的临床信息非常合适,我自己也用R包或者AI画过类似的图.今天给大家演示一下,如何用ggplot2里面的geom_tile函数画这种图. 先构造一个练习数据集,假设有15个病人,每个病人有年龄.性别.症状.是否有RNA-seq和WES测序等信息. library(ggplot2) library(tidyverse) l…
二.分类图 1. 分类散点图 (1)散点图striplot(kind='strip') 方法1: seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, jitter=True, dodge=False, orient=None, color=None, palette=None, size=5, edgecolor='gray', linewidth=0, ax=None, **kwa…
之前写过三篇和CNV相关的帖子,如果你做肿瘤单细胞转录组,大概率看过: 单细胞分析实录(11): inferCNV的基本用法 单细胞分析实录(12): 如何推断肿瘤细胞 单细胞分析实录(13): inferCNV结合UPhyloplot2分析肿瘤进化 其中,第三篇帖子里面有两个注释代码,可以在基因和染色体长短臂两个层面对CNV做注释 这次对tree_anno.R代码做了更新,简单来说就是对原始CNV region的长度做了限制,最后的结果会输出更少更明显的CNV 之前在我这里拿过代码的读者如果需…
本节和大家一起学习一下用Visio画UML类图的方法,主要有四个步骤,这里和大家分享一下,相信通过本节的学习,你对Visio画UML类图的步骤一定会有所了解. 用Visio画UML类图 对于画类图的工具很多,曾经学过用starUML画类图,但这个是用于Java语言的,对于用vs编程C++语言,个人感觉用visio会好一点.以下用以前面的俄罗斯方块游戏中的一个Block类为例来讲述. 1.首先创建一个类图.接下来我们要做一下准备工作,因为我们这里用了PSDK中的POINT类型,在种数据类型在vis…
绘制热图除了使用ggplot2,还可以有其它的包或函数,比如pheatmap::pheatmap (pheatmap包中的pheatmap函数).gplots::heatmap.2等.   相比于ggplot2作heatmap, pheatmap会更为简单一些,一个函数设置不同的参数,可以完成行列聚类.行列注释.Z-score计算.颜色自定义等. data_ori <- "Grp_1;Grp_2;Grp_3;Grp_4;Grp_5 a;6.6;20.9;100.1;600.0;5.2 b;…
热图是使用颜色来展示数值矩阵的图形.通常还会结合行.列的聚类分析,以表达实验数据多方面的结果.  热图在生物学领域应用广泛,尤其在高通量测序的结果展示中很流行,如样品-基因表达,样品-OTU相对丰度矩阵非常适合采用热图呈现.   热图优点   因为人读数字需要思考和比较,而对颜色识别能力非常强,采用颜色的深浅代替数据表是非常高效的呈现方式,也便于从中挖掘规律.  热图在非常小的区域展示了大量的基因表达/细菌丰度数据,即可以快速比较组间的变化,同时还可以显示组内每个样品的的丰度,以及组内各样品间的…