LBP简单实现】的更多相关文章

Local Binary Pattern 确实够简单...先写个代码在这儿,空了再弄 #include <opencv2/opencv.hpp> #include <iostream> #include <vector> using namespace std; using namespace cv; void LBP(const Mat& src , Mat& dst) { int rows =src.rows; int cols = src.cols…
(一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报  分类: OpenCV(60)  版权声明:本文为博主原创文章,未经博主允许不得转载. 决心开始研究OpenCV.闲言少叙,sourceforge网站最近的版本是2011年8月的OpenCV2.3.1,下载安装,我这里使用的开发环境是vs2008,网上搜了一下配置的教程,与之前的几个OpenCV版本的配置过程大体相同:(…
一.开发标签库 1.1.开发防盗链标签 1.编写标签处理器类:RefererTag.java 1 package me.gacl.web.simpletag; 2 3 import java.io.IOException; 4 import javax.servlet.http.HttpServletRequest; 5 import javax.servlet.http.HttpServletResponse; 6 import javax.servlet.jsp.JspException;…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
转自http://blog.csdn.net/ty101/article/details/8905394 本文的PDF版本,以及涉及到的所有文献和代码可以到下列地址下载: 1.PDF版本以及文献:http://download.csdn.net/detail/ty101/5349816 2.原作者的MATLAB代码:http://download.csdn.net/detail/ty101/5349894 LBP一种用来描述图像纹理特征的算子,该算子由芬兰奥卢大学的T.Ojala等人在1996年…
LBP(local banary patter)是一种非常经典的用来描述图像局部纹理特征的算子. 1,基本LBP LBP方法自1994年提出,此后就作为一个有效的纹理特征,不断的被人使用和改进.LBP非常简单,也非常有效. 左边的图是从一个图片上拿下来的3*3矩阵,矩阵上的值就是像素值,现在我们要计算的中间那个点的LBP.除了它此外的8个点依次与中间点比较,比它(也就是15)大的记成1,比它小的记成0,然后我们就得到右面的图片.然后我们选定一个起始点-这个图片选的是左上角第一个点,然后按照顺时针…
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像年提出,用于纹理特征提取.而且,提取的特征是图像的局部的纹理特征: 1.LBP特征的描述 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0.这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
最近一直在做多视图的聚类与分裂,想要图片有更多的视图,就得对图片的特征进行抽取,那我们来聊聊图片的LBP特征. Local binary patterns (局部二值模式),是机器视觉中重要的一种特征,它属于一个纹理问题.其核心是将各个元素与其他附近的像素进行比较,然后把结果保存为二进制数.LBP最重要的属性是对诸如光照变化等造成的灰度变化的鲁棒性.它的另外一个重要特性是它的计算简单,这使得它可以对图像进行实时分析.. LBP算子的计算流程: 首先如下图1:每个点的像素值表示出来,如果比中心的点…
LBP等价模式 考察LBP算子的定义可知,一个LBP算子可以产生多种二进制模式(p个采样点)如:3x3邻域有p=8个采样点,则可得到2^8=256种二进制模式:5x5邻域有p=24个采样点,则可得到2^24=16777216种二进制模式,以此类推.......显然,过多的二进制模式无论对于纹理的提取还是纹理的识别.分类及信息存取都是不利的,在实际应用中不仅要求采用的算子尽量简单,同时也要考虑到计算速度.存储量大小等问题.因此需要对原始的LBP模式进行降维.       Ojala提出一种"等价模…
LBP的全称是Local Binary Pattern即局部二值模式,是局部信息提取中的一种方法,它具有旋转不变性和灰度不变性等显著的优点.在人脸识别领域有很多案例,此外,局部特征的算法还有 SIFT HOG等等. LBP就是一种局部信息,它反应的内容是每个像素与周围像素的关系.举最基本的LBP为例,它反应了像素与周围8个点灰度值的关系,如下图所示: 如上图所示,中间像素的灰度值为54,我们如下定义:当周围像素的灰度值大于等于中间像素值时,则LBP的一位值为1,否则为零.由这个九宫格,我们就得到…
RNA_seq pipline RNA_seq pipline PeRl 2018年3月7日 首先说明一下我做RNA-seq处理流程的文件树格式: RNA-seq/ data/ GRCh38.gtf chroms/ hg38/ samples/ SraAccList.txt sra/ fasta/ fastqc/ cufflinks_result/ tophat_result/ HTSeq_result/ tools/ Trimmomatic-0.36/ 1. 下载参考基因组序列信息及注释文件G…
LBP方法(Local binary patterns)是一个计算机视觉中用于图像特征分类的一个方法.LBP方法在1994年首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 提出,用于纹理特征提取.后来LBP方法与HOG特征分类器联合使用,改善了一些数据集[45]上的检测效果. 对LBP特征向量进行提取的步骤如下: 首先将检测窗口划分为16×16的小区域(cell),对于每个cell中的一个像素,将其环形邻域内的B个点(也可以是环形邻域多个点,如下图,使用LBP算…
原理:使用GT人脸库做样本,VS2010下使用openCV2.44自带的Haar算法检測人脸区域,ASM Library特征检測,然后使用YCrCb颜色空间做肤色检測,再用LBP+Gabor小波提取特征,最小邻近距离做分类识别. 1.GT人脸库 Georgia Tech face database,网址:http://www.anefian.com/research/face_reco.htm GT人脸库包括50个人,每人15张不同角度.不同表情的正面照片. 图片为JPG格式,640*480,大…
Local binary pattern (LBP),在机器视觉领域,是非常重要的一种特征.LBP可以有效地处理光照变化,在纹理分析,纹理识别方面被广泛应用. LBP 的算法非常简单,简单来说,就是对图像中的某一像素点的灰度值与其邻域的像素点的灰度值做比较,如下图所示: 如果邻域像素值比该点大,则赋为1,反之,则赋为0,这样从左上角开始,可以形成一个bit chain,然后将该 bit chain 转换为一个十进制的数,用表达式可以表达如下: LBPP,R(xc,yc)=∑P=0P−1s(iP−…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/xinzhangyanxiang/article/details/37317863 图像物体检測识别中的LBP特征 1        引言 之前讲了人脸识别中的Haar特征,本文则关注人脸检測中的LBP特征.说是对于人脸检測的,事实上对于其它物体也能检測,仅仅需改动训练数据集就可以. 所以本文的题目是物体检測识别,比方能够检測是否汽车是否有车牌号等. 在opencv实现的haar特征的人脸识别算法中…
此篇摘取 <LBP特征原理及代码实现> <LBP特征 学习笔记> 另可参考实现: <LBP特征学习及实现> <LBP特征的实现及LBP+SVM分类> <目标检测的图像特征提取之(二)LBP特征> 1 LBP特征背景介绍 LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点.它是由T. Ojala, M.Pietikäinen, 和 D. Harw…
欲直接下载代码文件,关注我们的公众号哦!查看历史消息即可! 前言:让我的电脑认识我 我的电脑只有认识我,才配称之为我的电脑! 今天,我们用Python实现高大上的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 01 首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分…
转自http://blog.csdn.NET/ty101/article/details/8905394 本文的PDF版本,以及涉及到的所有文献和代码可以到下列地址下载: 1.PDF版本以及文献:http://download.csdn.net/detail/ty101/5349816 2.原作者的MATLAB代码:http://download.csdn.net/detail/ty101/5349894 LBP一种用来描述图像纹理特征的算子,该算子由芬兰奥卢大学的T.Ojala等人在1996年…
LBP算子特点 LBP(Local Binary Pattern),即局部二值模式,属于一种图像预处理算法,具有光照不变性和旋转不变性. 我目前做的项目是人脸表情识别,采用这种算法可以减少光照和人脸旋转对表情分类结果的影响,提升识别算法的鲁棒性(还没有完全的实践确认). LBP的发展过程 八邻域LBP 取一个像素点的周围8个邻域点,根据邻域点和中心像素点之间的相对大小关系,将高于中心像素点的邻域点取为1,低于中心像素点的邻域点取为0,并将其全部连接成一个8位二进制数,将此二进制数作为中心像素点的…
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/article/details/102478062本文章博客地址:https://blog.csdn.net/qq21497936/article/details/106144767各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究红胖子(红模仿)的博文大全:开发技术集合(包含Qt实…
实验环境 本实验均在笔记本电脑完成,电脑的配置如表1所示: 系统 Windows 10 家庭版 处理器 英特尔 Core i5-6200 @ 2.30GHz 双核 主板 宏碁 Zoro_SL 内存 16G(金士顿 DDR3 1600MHz) 主硬盘 西数 WDC WD10JPVX-22JC3T0 显卡 NVIDIA GeForce 940M(4G) 显示器 奇美 CMN15C4(15.5英寸) 表1:电脑配置 本实验使用Opencv对图像处理,使用MFC对图像显示,具体介绍如表2所示: Visu…
大家工作或者平时是不是经常遇到要读写一些简单格式的Excel? shit!~很蛋疼,因为之前吹牛,就搞了个这东西,还算是挺实用,和大家分享下. 厌烦了每次搞简单类型的Excel读写?不怕~来,喜欢流式操作?来~,喜欢用lambda(虽然java的比较蛋疼~),来~看这个~ 哈哈,如果你用的不是java8~~没问题,那就默默地用老方式匿名类来实现这些功能吧,但是这并不妨碍您的使用哈哈~~~ 更新多次~希望大家也能够集思广益~ github地址:https://github.com/MatrixSe…
Fabio(Go 语言):https://github.com/eBay/fabio Fabio 是一个快速.现代.zero-conf 负载均衡 HTTP(S) 路由器,用于部署 Consul 管理的微服务. Fabio 由 eBay Classifieds Group 开发,用于处理 marktplaats.nl 和 kijiji.it 的流量.Marktplaats 所有的流量都经过 Fabio ,每秒有 250000 个请求,分发于数个 Fabio 实例,并且没有出现任何延迟. 简单流程图…
一.一个简单的node程序 1.新建一个txt文件 2.修改后缀 修改之后会弹出这个,点击"是" 3.运行test.js 源文件 使用node.js运行之后的. 如果该路径下没有该文件,会报错 4.运行test2.js 二.模块简单使用 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式.在Node环境中,一个.js文件就称之为一个模块(module). 模块化的开发的好处:提高代码的可维护性,避免修…
背景 现在的web系统已经越来越多的应用缓存技术,而且缓存技术确实是能实足的增强系统性能的.我在项目中也开始接触一些缓存的需求. 开始简单的就用jvm(java托管内存)来做缓存,这样对于单个应用服务器来说很好. 为了系统的可用性,需要做灾备,那么就要多准备一套系统环境,这时就会有一些共享资源的问题,比如Tomcat的session共享出来 几个系统会公用一套缓存数据,这样就变成一个共享池 需求的增长也就带来了系统的变化,也正为这种变化我开始思考怎么让这些代码兼容,并为以后的系统模块提供比较统一…
推送系统 说是推送系统有点大,其实就是一个消息广播功能吧.作用其实也就是由服务端接收到消息然后推送到订阅的客户端. 思路 对于推送最关键的是服务端向客户端发送数据,客户端向服务端订阅自己想要的消息.这样的好处就是有消息后才向客户端推送,相比于拉取数据不会产生许多无效的查询,实时性也高. xmpp这种即时通信协议基于TCP长连接还是比较符合这种场景的.只需要在服务端增加一个模块用于接收用户订阅与数据的推送就完成了主体功能. 在xmpp协议里可以扩展组件,这样我们写一个组件,然后连接到xmpp服务器…
我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据类型 我的MYSQL学习心得(五) 运算符 我的MYSQL学习心得(六) 函数 我的MYSQL学习心得(七) 查询 我的MYSQL学习心得(八) 插入 更新 删除 我的MYSQL学习心得(九) 索引 我的MYSQL学习心得(十) 自定义存储过程和函数 我的MYSQL学习心得(十一) 视图 我的MYSQL学习心得(十二) 触发器 我的MY…
使用Nodejs搭建Web服务器是学习Node.js比较全面的入门教程,因为要完成一个简单的Web服务器,你需要学习Nodejs中几个比较重要的模块,比如:http协议模块.文件系统.url解析模块.路径解析模块.以及301重定向问题,下面我们就简单讲一下如何来搭建一个简单的Web服务器. 作为一个Web服务器应具备以下几个功能: 1.能显示以.html/.htm结尾的Web页面 2.能直接打开以.js/.css/.json/.text结尾的文件内容 3.显示图片资源 4.自动下载以.apk/.…