DP的四边形优化】的更多相关文章

DP的四边形优化 一.进行四边形优化需要满足的条件 1.状态转移方程如下: m(i,j)表示对应i,j情况下的最优值. w(i,j)表示从i到j的代价. 例如在合并石子中: m(i,j)表示从第i堆石子合并到j堆石子合并成一堆的最小代价. w(i,j)表示从第i堆石子到第j堆石子的重量和. 2.函数w满足区间包含的单调性和四边形不等式 二.满足上述条件之后的两条定理 1.假如函数w满足上述条件,那么函数m 也满足四边形不等式,即 例如: 假如有:w(1, 3) + w(2, 4) £ w(2,…
石子合并问题--圆形版 在圆形操场上摆放着一行共n堆的石子.现要将石子有序地合并成一堆.规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆石子数记为该次合并的得分.请编辑计算出将n堆石子合并成一堆的最小得分和将n堆石子合并成一堆的最大得分. Input 输入有多组测试数据. 每组第一行为n(n<=100),表示有n堆石子,. 二行为n个用空格隔开的整数,依次表示这n堆石子的石子数量ai(0<ai<=100) Output 每组测试数据输出有一行.输出将n堆石子合并成一堆的最小得分和将n…
看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1][j]+cost[i][j]);(或者是max(........),本博客以min为例来证明) 熟悉一般区间dp的同学应该清楚我们如果想得到最终的答案,一般要用三层for循环来计算(第一层为长度,第二层枚举起始点,第三层在起始点i和终点j之间寻找最优的分割点).显而易见它的时间复杂度为o(n^3),…
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的区间DP问题 d p[i][j]表示前i个节点,分为j个区间的最优策略值 cost[i][j]为从i到j节点的策略值 所以dp[i][j] = min(dp[k-1][j-1] + cost[k][i] 但是复杂度太高了 可以优化的地方有: cost数组值得求取: 考虑到cost(i,j)=ΣAxAy (i≤…
Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 1699    Accepted Submission(s): 769 Problem Description Far away from our world, there is a banana forest. And many lovely monkeys l…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草补给的公式是将每个站能收到的粮草的总和. 4----5-----1-----2 粮草总和为4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49. 4----5       1-----2 粮草总和为4*5 + 1*2 = 22. 4      5-----1------2 粮…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 题目大意: N堆石子摆成一个环.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价. 例如: 1 2 3 4,有不少合并方法 1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19) 1 2 3 4 => 1 5 4(5)…
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP 可以将时间复杂度缩减到O(N) O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推 斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等…
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿距离最短 题解: 很容易得到转移方程: $$dp[i][j]=min \{ dp[i][k-1]+dp[k][j] + dis(uni(i,k-1),uni(k,j))\}$$ 其中$dp[i][j]$表示从$i$到$j$的最优解,$dis(i,j)$表示$i$和$j$之间的曼哈顿距离,$uni(i…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1597 分析: 1.先可以把被包含的土地可以去掉,这些土地的长宽肯定都是不会用的,具体先把他们按照长从小到大排序,然后从后往前扫,如果后面的某个宽比前面宽大,那么就把这个土地给去掉.然后出来的土地的排序就是从前到后长递增,宽递减. 2.这个时候从贪心的思想可以知道取几块土地一起搞,那么这些土地肯定是连一块的.因为如果不连一块,可以把他们中间没取的土地也取了,不会改变结果,但显然对更优.…