结合例子,就很好理解了. 就是不要让共享变量被各个线程无序执行,导致结果不可预期 threading模块中定义了Lock类,可以方便的处理锁定: #创建锁mutex = threading.Lock()#锁定mutex.acquire([timeout])#释放mutex.release() 其中,锁定方法acquire可以有一个超时时间的可选参数timeout.如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁,从而可以进行一些其他的处理. #!/usr/bin/env pyt…
不多解释,预防普通锁不正规的获取与释放 #!/usr/bin/env python # -*- coding: utf-8 -*- import threading import time class MyThread(threading.Thread): def run(self): global num time.sleep(1) if mutex.acquire(1): num += 1 msg = self.name + ' set num to ' + str(num) print m…
前段时间看完LINUX的线程,同步,信息号之类的知识之后,再在理解PYTHON线程感觉又不一样了. 作一些测试吧. thread:模块提供了基本的线程和锁的支持 threading:提供了更高级别,功能更强的线程管理的功能 Queue:允许用户创建一个可以用于多个线程之间共享数据的队列数据结构 #!/usr/bin/env python # -*- coding: utf-8 -*- import thread from time import sleep, ctime loops = [4,2…
让我们考虑更复杂的一种场景:产品是各不相同的.这时只记录一个数量就不够了,还需要记录每个产品的细节.很容易想到需要用一个容器将这些产品记录下来. Python的Queue模块中提供了同步的.线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列 LifoQueue,和优先级队列PriorityQueue.这些队列都实现了锁原语,能够在多线程中直接使用.可以使用队列来实现线程间的同步. #!/usr/bin/env python # -*- coding: utf-8…
Python提供的Condition对象提供了对复杂线程同步问题的支持.Condition被称为条件变量,除了提供与Lock类似的 acquire和release方法外,还提供了wait和notify方法.线程首先acquire一个条件变量,然后判断一些条件.如果条件不满足则 wait:如果条件满足,进行一些处理改变条件后,通过notify方法通知其他线程,其他处于wait状态的线程接到通知后会重新判断条件.不断的重复 这一过程,从而解决复杂的同步问题. 可以认为Condition对象维护了一个…
很多时候,线程之间会有互相通信的需要.常见的情形是次要线程为主要线程执行特定的任务,在执行过程中需要不断报告执行的进度情况.前面的条件变量同步已经涉及到了线程间的通信(threading.Condition的notify方法).更通用的方式是使用threading.Event对象.threading.Event 可以使一个线程等待其他线程的通知.其内置了一个标志,初始值为False.线程通过wait()方法进入等待状态,直到另一个线程调用set()方法将 内置标志设置为True时,Event通知…
使用threading.Thread模块,也有两种使用方法,可以用类,也可以在实例化对象中传入函数或类实例. #!/usr/bin/env python # -*- coding: utf-8 -*- from threading import Thread import time def run_thread(n): for i in range(n): print i class race(Thread): def __init__(self,threadname,interval): Th…
互斥锁 #include <cstdio> #include <cstdlib> #include <unistd.h> #include <pthread.h> #include "iostream" using namespace std; pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; int tmp; void* thread(void *arg) { cout <<…
一,互斥锁,同步锁 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的, 竞争带来的结果就是错乱,如何控制,就是加锁处理 part1:多个进程共享同一打印终端 #并发运行,效率高,但竞争同一打印终端,带来了打印错乱 from multiprocessing import Process import os,time def work(): print('%s is running' %os.getpid()) time.sleep(2) print('…
一.守护进程 主进程创建守护进程 守护进程其实就是'子进程' 一.守护进程内无法在开启子进程,否则会报错二.进程之间代码是相互独立的,主进程代码运行完毕,守护进程也会随机结束 守护进程简单实例: from multiprocessing import Process import time def task(name): #此时的task为守护进程 print('%s is running' % name) #该行并不会被打印,因为主进程结束,守护进程会随之结束 time.sleep(3) if…