5 Logistic回归(二)】的更多相关文章

一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X59列; (2)4000行数据对应着4000个角色,ID编号从1到4001; (3)59列数据中, 第一列为角色ID,最后一列为分类结果,即label(0.1两种),中间的57列为角色对应的57种属性值. 二.思路分析及实现 2.1 思路分析 这是一个典型的二分类问题,结合课上所学内容,决定采用Log…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程.接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在某一个特征上的值,即特征向量x的某个值 y(i) 每个样本数据的所属类别标签 m 样本数据点的个数 hθ(x) 样本数据的概率密度函数,即某个数据属于1类(二分类问题)的概率 J(θ) 代价函数,估计样本属于某类的风险程度,越小代表越有可能属于这类 我们的目标是求出θ,使得这个代价函数J(θ)的值最…
主要内容: 一.回归与分类 二.Logistic模型即sigmoid function 三.decision boundary 决策边界 四.cost function 代价函数 五.梯度下降 六.自带求解函数 七.多分类问题 一.回归与分类 回归:用于预测,输出值是连续型的.例如根据房子的大小预测房子的价格,其价格就是一个连续型的数. 分类:用于判别类型,输出值是离散型的(或者可以理解为枚举型,其所有的输出值是有限的且已知的),例如根据肿瘤的大小判断其是恶行肿瘤还是良性肿瘤,其输出值就是0或1…
Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型.这里只讲二分类. 对于二分类的Logistic回归,因变量y只有“是.否”两个取值,记为1和0.这种值为0/1的二值品质型变量,我们称其为二分类变量. 假设在自变量$x_{1}, x_{2}, \cdots, x_{p}$作用下,y取“是”的概率是p,则取“否”的概率是1-p,研究的是当y取“是”发生的模率p与自变量$x_{1}, x_{2}, \cdots, x_{p}$的关系. Logistic回归模型 ①Logit变…
对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能对连续变量进行分析. 使用线性回归模型可以解决上述的部分问题,但是传统的线性模型默认因变量为连续变量,当因变量为分类变量时,传统线性回归模型的拟合方法会出现问题,因此人们继续发展出了专门针对分类变量的回归模型.此类模型采用的基本方法是采用变量变换,使其符合传统回归模型的要求.根据变换的方法不同也就衍…
5.2.4 训练算法:随机梯度上升 梯度上升算法:在每次更新回归系数时都需要遍历整个数据集,在数十亿样本上该算法复杂度太高. 改进方法:随机梯度上升算法:一次仅用一个样本点更新回归系数. 由于可以在新样本到来时对分类器进行增量式更新,因此随机梯度上升算法是一个在线学习算法.与“在线学习”相对应,一次处理所有数据被称作“批处理”. #5-3:随机梯度上升算法 def stocGradAscent0(dataMatrix, classLabels): m, n = shape(dataMatrix)…
逻辑回归二分类 今天尝试写了一下逻辑回归分类,把代码分享给大家,至于原理的的话请戳这里 https://blog.csdn.net/laobai1015/article/details/78113214   (在这片博客的基础上我加了一丢丢东西). 用到的预测函数为 其中,h为预测函数(大于0.5为一类,小于等于0.5为另一类).θ为各个特征的参数.θ=[θ1,θ2,θ3...]T 损失函数J(θ)为 利用梯度下降算法进行参数的更新公式如下: 其中,α是学习率参数,λ是正则项参数,需要自己输入.…
有监督学习 机器学习分为有监督学习,无监督学习,半监督学习.强化学习.对于逻辑回归来说,就是一种典型的有监督学习. 既然是有监督学习,训练集自然能够用例如以下方式表述: {(x1,y1),(x2,y2),⋯,(xm,ym)} 对于这m个训练样本,每一个样本本身有n维特征. 再加上一个偏置项x0, 则每一个样本包括n+1维特征: x=[x0,x1,x2,⋯,xn]T 当中 x∈Rn+1, x0=1, y∈{0,1} 李航博士在统计学习方法一书中给分类问题做了例如以下定义: 分类是监督学习的一个核心…
logistic回归 回归就是对已知公式的未知参数进行估计.比如已知公式是$y = a*x + b$,未知参数是a和b,利用多真实的(x,y)训练数据对a和b的取值去自动估计.估计的方法是在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值,直到找到那个最符合样本点分布的参数(或参数组合). logistic分布 设X是连续随机变量,X服从logistic分布是指X具有下列分布函数和密度函数: $$F(x)=P(x \le x)=\frac 1 {1+e^{-…