传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中有不同的队友. 这年头真是--分治FFT都开始烂大街了-- 我们来推一推吧 这显然是一个1d1d的DP,用f[i]表示i名队员的方案数 f[i]=∑j=0i−1f[i−j−1]∗Cji−1 即i−1个人里面选j个和i组队(似乎类似strling数) 然后化一下简,便可得到 f[i]=(i−1)!∑j…
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…
Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough. Suppose the shell necklace is a sequence of…
[BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量. 显然\(g(i)=2^{C_i^2}\)种,但是我们要把不联通的去掉. 枚举1号点所在联通块大小\(j\).从剩下\(i-1\)个点里选\(j-1\)个点和1号点构成联通块,有\(C_{i-1}^{j-1}\)种选法.1号点所在联通块的连边方案有\(f(i)\)种,剩下\(i-j\)个点随便连边…
题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对于这种递推式,也就是dp[i]等于前j个dp数组和a数组的卷积,然后可看所有的 一看n是1e5,所以暴力超时,然后采用cdq分治加速,这种卷积递推通常采用cdq分治加速 cdq的话很简单了,就是先递归左边,算左对右的贡献,递归右边就行,一半一半更新 #include <cstdio> #inclu…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3,则其权值为5,现在有长度为n的字段,求通过不同拆分得到的字段权值乘积和. [题解] 记DP[i]表示长度为i时候的答案,DP[i]=sum_{j=0}^{i-1}DP[j]w[i-j],发现是一个卷积的式子,因此运算过程可以用FFT优化,但是由于在计算过程中DP[j]是未知值,顺次计算复杂度是O(…
[CF553E]Kyoya and Train 题意:有一张$n$个点到$m$条边的有向图,经过第i条边要花$c_i$元钱,经过第i条边有$p_{i,k}$的概率要耗时k分钟.你想从1走到n,但是如果整个过程耗时超过了$t$,则需要额外花费$f$元.求从1走到n的期望最小花费. $n\le 50,m\le 100,t\le 20000,k\le 1$ 题解:我们先用最短路预处理出如果已经超时了,从1走到n的最小花费.剩下的考虑DP. 用f[i][j]表示在i时刻到达了j,想走到n的最小花费.则对…
首先读出题意,然后发现这是一道DP,我们可以获得递推式为 然后就知道,不行啊,时间复杂度为O(n2),然后又可以根据递推式看出这里面可以拆解成多项式乘法,但是即使用了fft,我们还需要做n次多项式乘法,时间复杂度又变成O(n2 * log n),显然不可以.然后又利用c分治思维吧问题进行拆分问题但是,前面求出来的结果对后面的结果会产生影响,所以我们使用cdq分治思想来解决这个问题,时间复杂度变为O(n * log2n). #include<bits/stdc++.h> using namesp…
Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough. Suppose…
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5730 Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but…
Description 给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案 题解: dp[i]表示组合成包含i个贝壳的项链的总方案数 转移:dp[i]=Σdp[i-j]*a[j](1<=j<=i) #include <bits/stdc++.h> using namespace std; #define dob complex<double> #define rint register int #defin…
[HDU5730]Shell Necklace(多项式运算,分治FFT) 题面 Vjudge 翻译: 有一个长度为\(n\)的序列 已知给连续的长度为\(i\)的序列装饰的方案数为\(a[i]\) 求将\(n\)个位置全部装饰的总方案数. 答案\(mod\ 313\) 题解 很明显,是要求: \(f[n]=\sum_{i=0}^na[i]\times f[n-i],f[0]=0\) 卷积的形式啊.. 然后就可以开始搞了 忍不住的方法一 好明显啊,把生成函数\(F,A\)给搞出来 然后就有\(F*…
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 525  Solved: 418[Submit][Status][Discuss] Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <…
Link Solution 有两种解法. 法1: 直接上分治FFT,也就是CDQ分治+FFT. 具体做法是先递归左半边,算出左半边答案之后,将左半边贡献到右半边,然后递归右半边. 分治是一个log的,每次暴力计算贡献是\(\text O(n^2)\)的,考虑用FFT优化计算贡献的过程.总复杂度变成\(\text O(n{log_n}^2)\). 需要注意:因为只算左半边对右半边的贡献,所以f数组右半边应置为0. 法2: 设 \(F(x)=\sum\limits_{i=0}^{\infty}f[i…
题目链接 题意:给定两个长度为n的数组a与长度为m的数组b, 给定一个操作符op满足 x op y = x < y ? x+y : x-y.  有q个询问,每次给出询问c,问:有多少对(i, j)满足a[i] op b[j] = c ? 0 <= c <= 100000, 其余数据范围在[0, 50000]. 题解:问题的关键在于如何分隔开 x < y与x >= y. cdq分治,合并的时候a[l, mid]与b[mid+1, r]卷积一次计算a[] < b[] , a…
题意:dp[n] = ∑ ( dp[n-i]*a[i] )+a[n], ( 1 <= i < n) cdq分治. 计算出dp[l ~ mid]后,dp[l ~ mid]与a[1 ~ r-l]做卷积运算. #include <bits/stdc++.h> using namespace std; ; ; const double pi = acos(-1.0); struct comp{ ,){r=_r;i=_i;} comp operator+(const comp x){retu…
题目链接 dp[n] = sigma(a[i]*dp[n-i]), 给出a1.....an, 求dp[n]. n为1e5. 这个式子的形式显然是一个卷积, 所以可以用fft来优化一下, 但是这样也是会超时的. 所以可以用cdq分治来优化. cdq分治就是处理(l, mid)的时候, 将dp[l]...dp[mid]对dp[mid+1]...dp[r]做的贡献都算出来. #include <bits/stdc++.h> using namespace std; #define pb(x) pus…
Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 647    Accepted Submission(s): 287 Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view,…
题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正关系,跟 CDQ 分治套树状数组之类性质差不多吧(所以我也不知道为什么洛谷要把这个作为一个模板). 言归正传,先看一眼原来的式子: \[f[i]=\begin{cases}1\ (i=0)\\\sum_{j=1}^{i}f[i-j]g[j]\ \mathrm{otherwise}\end{cases}\] \…
C1. 组队活动 Small Time Limit: 1000ms Memory Limit: 131072KB 64-bit integer IO format: %lld      Java class name: Main Submit Status PID: 51280 BNU ACM校队一共有名队员,从到标号,现在名队员要组成若干支队伍来相互学习.共同进步,为了保证学习效率,每支队伍至多有名队员,你需要计算出一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员…
题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多…
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can help you conquer obstacles in your life, just keep fighting, and solve the problem below. In mathematics, the notion of permutation relates to the ac…
试题来源 2013中国国家集训队第二次作业 问题描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案. 好了, 这就是困扰阿狸的问题.…
Problem Description RD is a smart boy and excel in pinball game. However, playing common 2D pinball game for a great number of times results in accumulating tedium. Recently, RD has found a new type of pinball game, a 3D pinball game. The 3D pinball…
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治fft 注意过程中把r-l+1当做次数界就可以了,因为其中一个向量是[l,mid],我们只需要[mid+1,r]的结果. 多项式求逆 变成了 \[ A(x) = \frac{f_0}{1-B(x)} \] 的形式 要用拆系数fft,直接把之前的代码复制上就可以啦 #include <iostream…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
分治FFT是几个算法的统称.它们之间并无关联. 分治多项式乘法 问题如求\(\prod_{i=1}^na_ix+b\). 若挨个乘复杂度为\(O(n^2\log n)\),可分治做这件事,复杂度为\(O(n\log^2 n)\).采用这种算法的条件是最终乘出来的式子长度是\(O(n)\)的. 也可以用多项式ln和exp做到\(O(n\log n)\). 用CDQ分治快速求一类多项式的算法 第一类 已知\(f(x)=\sum_{i=1}^xf(i)g(x-i)\),给定\(f(0)\).\(g(1…
以前学的分治fft f[i]=sigma(f[i-x]*g[x]),其中g[x]已知 那么我们可以用cdq分治来做(l,mid 对mid+1,t的影响) 而现在的$f[i]=sum(f(i-x)*f(x))$ 我们如果沿用刚才的方法 会发现有$f(t-h)$这一项 而$t-h>mid$是有可能的 所以我们要在后续处理这件事情 先将$f[l,mid]*f[l,mid]$乘起来 如果$t-h<h$ 还要算$f[1,t-h]*f[h,mid]$ 注意还要乘2 注意多次用fft 每次还原a,b数组 因…
In this problem you will meet the simplified model of game Pudding Monsters. An important process in developing any game is creating levels. A game field in Pudding Monsters is an n × n rectangular grid, n of its cells contain monsters and some other…
瞎扯 虽然说是FFT但是还是写了一发NTT(笑) 然后忘了IDFT之后要除个n懵逼了好久 以及递归的时候忘了边界无限RE 思路 朴素算法 分治FFT 考虑到题目要求求这样的一个式子 \[ F_x=\Sigma_{i=1}^{x}F_{x-i}G_{i} \] 我们可以按定义暴力,然后再松式卡常(不是) 我们可以发现它长得像一个卷积一样,但是因为后面的f值会依赖与前面的f值,所以没法一遍FFT直接求出结果,而对每个f都跑一遍FFT太慢了,我们使用分治优化这个过程就很优秀了,复杂度是\(O(n\lo…