数据挖掘之KNN算法(C#实现)】的更多相关文章

在十大经典数据挖掘算法中,KNN算法算得上是最为简单的一种.该算法是一种惰性学习法(lazy learner),与决策树.朴素贝叶斯这些急切学习法(eager learner)有所区别.惰性学习法仅仅只是简单地存储训练元组,做一些少量工作,在真正进行分类或预测的时候才开始做更多的工作.有点像是平时不努力学习功课,到了考前才开始临时抱佛脚的感觉. KNN(k-nearest-neighbor)算法的思想是找到在输入新数据时,找到与该数据最接近的k个邻居,在这k个邻居中,找到出现次数最多的类别,对其…
1.K-近邻算法(Knn) 其原理为在一个样本空间中,有一些已知分类的样本,当出现一个未知分类的样本,则根据距离这个未知样本最近的k个样本来决定. 举例:爱情电影和动作电影,它们中都存在吻戏和动作,出现一个未知分类的电影,将根据以吻戏数量和动作数量建立的坐标系中距离未知分类所在点的最近的k个点来决定. 2.算法实现步骤 (1)计算所有点距离未知点的欧式距离 (2)对所有点进行排序 (3)找到距离未知点最近的k个点 (4)计算这k个点所在分类出现的频率 (5)选择频率最大的分类即为未知点的分类 3…
(2017-04-10 银河统计) KNN算法即K Nearest Neighbor算法.这个算法是机器学习里面一个比较经典的.相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法是用来做归类的,也就是说,一个样本空间里的样本已经分成很几个类型,然后,给定一个待分类的数据,通过计算接近自己最近的K个样本来判断这个待分类数据属于哪个分类.你可以简单的理解为由那离自己最近的K个点来投票决定待分类数据归为哪一类. 一个比较经典的KNN图如下: 从上图中我们可以看到,图中的有两个类型…
knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法.注意,不是聚类算法.所以这种分类算法 必然包括了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒惰算法.它并非像其他的分类算法先通过训练建立分类模型.,而 是一种被动的分类过程.它是边测试边训练建立分类模型. 算法的一般描述过程如下: 1.首先计算每个测试样本点到其他每个点的距离.这个距离可以是欧氏距离,余弦距离等. 2.然后取出距离小于设定的距离阈值的点.这些点即为根据阈值环绕在测试样本最邻…
knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法. 注意,不是聚类算法.所以这样的分类算法必定包含了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒惰算法.它并不是 像其它的分类算法先通过训练建立分类模型.,而是一种被动的分类 过程.它是边測试边训练建立分类模型. 算法的一般描写叙述步骤例如以下: 1.首先计算每一个測试样本点到其它每一个点的距离. 这个距离能够是欧氏距离,余弦距离等. 2. 然后取出距离小于设定的距离阈值的点. 这些点即为依…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
最近研究数据挖掘的相关知识,总是搞混一些算法之间的关联,俗话说好记性不如烂笔头,还是记下了以备不时之需. 首先明确一点KNN与Kmeans的算法的区别: 1.KNN算法是分类算法,分类算法肯定是需要有学习语料,然后通过学习语料的学习之后的模板来匹配我们的测试语料集,将测试语料集合进行按照预先学习的语料模板来分类 2Kmeans算法是聚类算法,聚类算法与分类算法最大的区别是聚类算法没有学习语料集合. K-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据他们的属性分为k个聚类以便使得…
KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思. 算法描述 KNN是一种分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类. 算法过程如下: 1.准备样本数据集(样本中每个数据都已经分好类,并具有分类标签):2.使用样本数据进行训练:3.输入测试数据A:4.计算A与样本集的每一个数据之间的距离:5.按照距离递增次序排序:6.选取与A距离最小的k个点:7.计算前k个点所在类别的出现频率:8.返回前k个点出现频率最高的类别作为A的预测分类. 主要因素 训练集(或…
邻近算法 或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. 关于K最近邻算法,非常好的一篇文章:KNN算法理解 写在前面的:Python2.7 数据iris: http://pan.baidu.com/s/1bHuQ0A   测试数据集: iris的第1行数据: 训练数据: iris的2到150行数据 #coding:utf-8 import pand…
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.判断邻居就是用向量距离大小来刻画.          kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. kNN方法在类…