DP4J -- mnist】的更多相关文章

标签(空格分隔): DeepLearning mnist mnist是一个数据集,其中包含很多手写数字的图片,每张图片都已经打上了label: Deep Learning 传统的机器学习神经网络由一层输入层和一个输出层构成,中间最多还包含一个隐藏层.包括输入和输出层在内,超过三层的神经网络就被称为Deep Learning.所以Deep是一个严格的定义,在技术层面讲的话就是超过一层的隐藏层. Traditional machine learning relies on shallow nets,…
典型的卷积神经网络. Keras傻瓜式读取数据:自动下载,自动解压,自动加载. # X_train: array([[[[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0.…
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru…
刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层. 数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出.输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值.借用极客学院的图表示如下: 其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3. 用简单的公式表示如下: 在训练过程…
深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些人并不知道该怎么办.在此我将mnist数据进行了转化,变成了一张张的图片,我们练习就从图片开始.mnist图片数据我放在了百度云盘. mnist图片数据下载:htt…
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
import numpy as npimport gzip import struct import keras as ks import logging from keras.layers import Dense, Activation, Flatten, Convolution2D from keras.utils import np_utils def read_data(label_url,image_url): with gzip.open(label_url) as flbl: m…
反正基本上是给自己看的,直接贴写过注释后的代码,可能有的地方理解不对,你多担待,看到了也提出来(基本上对未来的自己说的),三层跑到了97%,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #numpy只保存数值,用于数值运算,解决Python标准库中的list只能保存对象的指针的问题 import os #本例子中没有使用到 import gzip #使用zlib来压缩和解压缩数据文件,读写gzip文件 import struct…
读本篇论文“Batch-normalized Maxout Network in Network”的原因在它的mnist错误率为0.24%,世界排名第4.并且代码是用matlab写的,本人还没装cafe……  理论知识 本文是台湾新竹国立交通大学的Jia-Ren Chang 写的,其实要说这篇文章有多在的创新,还真没有,实际上它就是把三篇比较新的论文的东西组合起来,分别是这三篇: 1.Network in network :ICLR 2014 2.Maxout Networks :ICML 20…
使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list…