tensorflow张量限幅】的更多相关文章

本篇内容有clip_by_value.clip_by_norm.gradient clipping 1.tf.clip_by_value a = tf.range(10) print(a) # if x<a res=a,else x=x print(tf.maximum(a,2)) # if x>a,res=a,else x=x print(tf.minimum(a,8)) # 综合maximum和minimum两个函数的功能,指定上下限 print(tf.clip_by_value(a,2,…
张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor). 张量(Tensor)是任意维度的数组. 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howdy\' 或 5 1阶张量:向量 (vector)或矢量,也就是一维数组(一组有序排列的数),例如,[2, 3, 5, 7, 11] 或 [5] 2阶张量:矩阵 (matrix),也就是二维数组(有序排列的向量),例如,[[3.1, 8.2, 5.9][4.3, -2.7, 6.5]] 3阶张量:三维…
张量常规解释 张量(tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具.张量之所以重要,在于它可以满足一切物理定律必须与坐标系的选择无关的特性.张量概念是矢量概念的推广,矢量是一阶张量.张量是一个可用来表示在一些矢量.标量和其他张量之间的线性关系的多线性函数. Tensorflow中张量的概念 在tensorflow程序中所有的数据都通过张量的形式来表示. 从功能的角度…
x = tf.placeholder(tf.float32, [None, 784]) x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to run a computation. We want to be able to input any number of MNIST images, each flattened into a 784-dimensio…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
本篇记录一下TensorFlow中张量的排序方法 tf.sort和tf.argsort # 声明tensor a是由1到5打乱顺序组成的 a = tf.random.shuffle(tf.range(5)) # 打印排序后的tensor print(tf.sort(a,direction='DESCENDING').numpy()) # 打印从大到小排序后,数字对应原来的索引 print(tf.argsort(a,direction='DESCENDING').numpy()) index =…
import tensorflow as tf import numpy as np ts_norm=tf.random_normal([]) with tf.Session() as sess: norm_data=ts_norm.eval() print(norm_data[:]) import matplotlib.pyplot as plt plt.hist(norm_data) plt.show() def layer_debug(output_dim,input_dim,inputs…
对输入或输出而言: 一个张量的形状为a x b x c x d,实际写出这个张量时: 最外层括号[…]表示这个是一个张量,无别的意义! 次外层括号有a个,表示这个张量里有a个样本 再往内的括号有b个,表示每个样本的长 再往内的括号有c个,表示每个样本的宽 再往内没有括号,也就是最内层的括号里的数有d个,表示每个样本的深度为d tf.nn.conv2d(), tf.reshape()等都是这样表示 给一个具体的张量,求这个张量的a,b,c,d值时,首先忽略最外层的括号,再数次外层括号个数(a),再…
# tf.Graph对象定义了一个命名空间对于它自身包含的tf.Operation对象 # TensorFlow自动选择一个独一无二的名字,对于数据流图中的每一个操作 # 但是给操作添加一个描述性的名字可以使你的程序更容易来阅读和调试 # TensorFlow api提供两种方式来重写一个操作的名字 # 1.每一个api函数创建了一个新的tf.Operation或者返回一个新的tf.Tensor接收一个可选的name参数 # 列如tf.constant(42.0,name="answer&quo…
import tensorflow as tf a = tf.range(10) a # a中小于2的元素值为2 tf.maximum(a, 2) # a中大于8的元素值为8 tf.minimum(a, 8) # a中的元素值限制在[2,8]区间内 tf.clip_by_value(a, 2, 8) a = a - 5 a tf.nn.relu(a) tf.maximum(a, 0) 缩放时不改变梯度方向 a = tf.random.normal([2, 2], mean=10) a tf.no…