题目大意 ​ 小Q发明了一种进位制,每一位的变化范围是\(0\)~\(b_i-1\),给你一个这种进位制下的整数\(a\),问你有多少非负整数小于\(a\).结果以十进制表示. ​ \(n\leq 120000,0\leq a_i<b_i\leq 1000000\) 题解 ​ 就是求这个数. ​ 那没什么好说的,直接分治FFT 处理左半边(低位)的\(c_1=\prod b_i\)和答案\(d_1\),右半边的\(c2,d2\) ​ 那么\(c=c_1\times c_2,d=d_2\times…
题意很简单,就是求这个数... 其实场上我想出了分治fft的正解...然而不会打...然后打了个暴力fft挂了... 没啥好讲的,这题很恶心,卡常卡精度还爆int,要各种优化,有些dalao写的很复杂我都没看懂...我写的是每三位拆分然后再合并 代码: //强烈谴责卡常数而需要大量优化 //upd:还卡精度... #include<algorithm> #include<iostream> #include<cstring> #include<cstdio>…
北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$直接到达终点的概率,显然期望步数就是$\frac{1}{f_i}$: 考虑转移,设下一个事件概率为$p$,则 如果下一个事件是敌人:$f_i=f_{i+1}*p$ 如果下一个事件是旗子: $f_{i}=(1-p)*(1-f_{i+1})*(1+p*(1-f_{i+1})+p^{2}*(1-f_{i+…
一道很有意思的神题~ 暴力平衡树的复杂度很对(并不),但是$2^{30}$的空间一脸屎 这题的正解是一个类似线段树的数据结构,我觉得很有创新性Orz 首先可以想到一种暴力就是用一个点代表一个区间,然后用链表维护这些点的集合,每次alloc操作就相当于割开未分配的区间,即增加了一个点,free操作就相当于合并.所以最多会产生$n$个点,单次操作$O(n)$,时间复杂度$O(n^2)$但是不满,貌似常数小就可以拿60: 把这个集合看成一个序列的话,快速修改点的信息肯定会想到线段树,正解就是用线段树去…
题解: 题解居然是LCT……受教了 把所有区间按照端点排序,动态维护目前有重叠的区间,用LCT维护即可. 代码: #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<queue> using namespace std; typedef long long ll; struct node{…
题目大意 一个数每一位进制不同,已知每一位的进制,求该数的十进制表达. 显然有 $$Ans=\sum\limits_{i=0}^{n-1}a_i \prod\limits_{j=0}^{i-1}base_j$$ 若不考虑高精度则线性复杂度内由低位向高位递推即可,但考虑高精度的话即使压位也会$TLE$. 采用分治$+FFT$加速运算的方法. 分别求出第$1$至第$\frac n2$位和第$\frac n2+1$至第$n$位的答案,顺便求出$\prod\limits_{i=0}^{\frac n2}…
题解: 限制可以看成图状结构,每个任务的对物品数量的影响可以看成权值,只不过这个权值用一个五元组来表示. 那么题意要求的就是最大权闭合子图,网络流经典应用. 代码: #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<queue> #define inf 100000000000000000…
题解: 这题看起来很难...但是实际上并没有想象中的那么难 第一眼看上去不会求导公式怎么办?不要紧,题目背景非常良心的给出了题目中的导数计算公式 求完导合并同类项很恶心怎么办?不要紧,样例解释说明了不需要合并同类项(然后有许多人因为这个爆〇了) 一看这种题目形式明显就是大数据结构,外面的序列明显线段树维护,次数也可以用线段树,但是线段树套线段树容易MLE: 所以用树状数组套线段树实现 具体就是以1~n为下标建线段树,外面用树状数组维护次数,每次在树状数组上查询即可 写完过样例直接1A就是爽 代码…
题目大意:你有$n$个操作和一个初始为$0$的变量$x$. 第$i$个操作为:以$P_i$的概率给$x$加上$A_i$,剩下$1-P_i$的概率给$x$乘上$B_i$. 你袭击生成了一个长度为$n$的排列$C$,并以此执行了第$C_1,C_2....C_n$个操作. 求执行完所有操作后,变量$x$的期望膜$998244353$的值. 数据范围:$n≤10^5,0≤P,A,B<998244353$ 我太菜了. 考虑如果并没有排列的要求,而是强行依次执行,会发生什么事情: 令$X_i$表示执行完前$…
Description Solution 哇真的异常服气..线段树都可以搞合并和拆分的啊orzorz.神的世界我不懂 Code #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; ; ; int sz[M],lc[M],rc[M],tag[M],rt[N],all_work,cnt; ) { int o=++cnt; tag[o]…