Project Euler:Problem 77 Prime summations】的更多相关文章

It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + 2 3 + 3 + 2 + 2 2 + 2 + 2 + 2 + 2 What is the first value which can be written as the sum of primes in over five thousand different ways? #include <i…
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is 28. In fact, there are exactly four numbers below fifty that can be expressed in such a way: 28 = 22 + 23 + 24 33 = 32 + 23 + 24 49 = 52 + 23 + 24 47…
It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 How many different ways can one hundred be written as a sum of at least two positive integers? #include <iostream> u…
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? #include <iostream> #incl…
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindromes so quickly. For example, 349 + 943 = 1292, 1292 + 2921 = 4213 4213 + 3124 = 7337 That is, 349 took three iterations to arrive at a palindrome. Al…
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The first three consecutive numbers to have three distinct prime factors are: 644 = 2² × 7 × 23 645 = 3 × 5 × 43 646 = 2 × 17 × 19. Find the first four co…
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is a ninth power. How many n-digit positive integers exist which are also an nth power? 这种数字满足下面条件: 对于数位为x的数S=k^x 有 10^(x-1)<=k^x<=10^x-1 #include &quo…
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the opposite corner. By travelling on the surfaces of the room the shortest "straight line" distance from S to F is 10 and the path is shown on the di…
For a number written in Roman numerals to be considered valid there are basic rules which must be followed. Even though the rules allow some numbers to be expressed in more than one way there is always a "best" way of writing a particular number…
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3. Fi…
By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four arithmetic operations (+, −, *, /) and brackets/parentheses, it is possible to form different positive integer targets. For example, 8 = (4 * (1 + 3)) /…
Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18  5  4  3 12 29 40 19  6  1  2 11 28 41 20  7  8  9 10 27 42 21 22 23 24 25 26 43 44 45 46…
If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exactly three solutions for p = 120. {20,48,52}, {24,45,51}, {30,40,50} For which value of p ≤ 1000, is the number of solutions maximised? #include <iostre…
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 25 20  7  8  9 10 19  6  1  2 11 18  5  4  3 12 17 16 15 14 13 It can be verified that the sum of the numbers on the diagona…
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital. The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing mult…
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are equal to the sum of the factorial of their digits. Note: as 1! = 1 and 2! = 2 are not sums they are not included. #include <iostream> #include <v…
Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae: Triangle   P3,n=n(n+1)/2   1, 3, 6, 10, 15, ... Square   P4,n=n2   1, 4, 9, 16, 25, ... Penta…
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... By converting each letter in a word to a number corresponding to its alphabetical position and…
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8, which is correct, is obtained by cancelling the 9s. We shall consider fractions like, 30/50 = 3/5, to be…
A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, {a1, a2, ... , ak} is called a product-sum number: N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. For example, 6 = 1 + 2 + 3 = 1 × 2 × 3. Fo…
In the card game poker, a hand consists of five cards and are ranked, from lowest to highest, in the following way: High Card: Highest value card. One Pair: Two cards of the same value. Two Pairs: Two different pairs. Three of a Kind: Three cards of…
A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, {a1, a2, ... , ak} is called a product-sum number: N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. For example, 6 = 1 + 2 + 3 = 1 × 2 × 3. Fo…
Comparing two numbers written in index form like 211 and 37 is not difficult, as any calculator would confirm that 211 = 2048 < 37 = 2187. However, confirming that 632382518061 > 519432525806 would be much more difficult, as both numbers contain ove…
原题: Prime summations It is possible to write ten as the sum of primes in exactly five different ways: 7 + 35 + 55 + 3 + 23 + 3 + 2 + 22 + 2 + 2 + 2 + 2 What is the first value which can be written as the sum of primes in over five thousand different…
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest product in a grid # In the 20×20 grid below, four numbers along a diagonal line have been marked in red. # The product of these numbers is 26 × 63 × 78 ×…
本题来自 Project Euler 第7题:https://projecteuler.net/problem=7 # Project Euler: Problem 7: 10001st prime # By listing the first six prime numbers: # 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. # What is the 10 001st prime number? # Answer…
本题来自 Project Euler 第3题:https://projecteuler.net/problem=3 # Project Euler: Problem 3: Largest prime factor # The prime factors of 13195 are 5, 7, 13 and 29. # What is the largest prime factor of the number 600851475143 ? # Answer: 6857 a = 6008514751…
本题来自 Project Euler 第22题:https://projecteuler.net/problem=22 ''' Project Euler: Problem 22: Names scores Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into al…
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable numbers Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b…
本题来自 Project Euler 第20题:https://projecteuler.net/problem=20 ''' Project Euler: Problem 20: Factorial digit sum n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! i…