线性回归(linear regression)实践篇 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错,算是入门了. 这次打算以该课程的作业为主线,对机器学习基本知识做一下总结.小弟才学疏浅,如有错误.敬请指导. 问题原描写叙述: you will implement linear regression with one variable to predict prots for a food truck. Suppose you are the CEO of a…
Octave/matlab的经常使用知识之矩阵和向量 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错.算是入门了.这次打算以该课程的作业为主线,对机器学习基本知识做一下总结.小弟才学疏浅.如有错误,敬请指导. Andrew的课程选了Octave/matlab为编程语言.他选择这个预计很多其它是考虑大众性,这门语言easy入门. 然后我认为学会使用Octave/matlab还是挺实用的. 一来是她天生是个数学工具,開始的研究阶段使用她最方便莫属.注意我这里所说的是…
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示为  公式可以简化为 两个矩阵相乘   其实就是所有参数和变量相乘再相加  所以矩阵的乘法才会是那样 那么他的代价函数就是 同样是寻找使J最小的一系列参数 python代码为 比如这种     那么X是[1,2,3]   y也是[1,2,3]   那么令theta0 = 0  theta1 = 1 …
机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-squares(在spss里线性回归对应的模块就叫OLS即Ordinary Least Squares): 算法:基于训练数据集,根据学习策略,选择最优模型的计算方法.确定模型中每个θi取值的计算方法,往往归结为最优化问题.对于线性回归,我们知道它是有解析解的,即正规方程 The normal equa…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable  1. 代价函数Cost Function  在单变量线性回归中,已知有一个训练集有一些关于$x$.$y$的数据(如×所示),当我们的预测值$h(x)$…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 2. 多变量线性回归 Linear Regression with Multiple Variables 1 多特征值(多变量) Multiple Features(Variables) 首先,举例说明了多特征值(多变量)的情况.在下图的例子中,…
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学习的利器,打包了众多的机器学习中的模型以及各种数学上的处理 因此利用TensorFlow来学习机器学习能起到事半功倍的效果. 以下代码即是线性回归的实现(实现对函数  y = 0.1 x + 0.3  的回归)代码内给出详细注释便于理解 import tensorflow as tf import…
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下降的直观理解 2.6  梯度下降的线性回归 2.7  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x          …
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 II 2.5  梯度下降 2.6  梯度下降的直观理解 2.7  梯度下降的线性回归 2.8  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工作够用.周期会比较长,因为我还想写一些其他的,呵呵. content: linear regression, Ridge, Lasso Logistic Regression, Softmax Kmeans, GMM, EM, Spectral Clustering Dimensionality R…
线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Representation 一个实际问题,我们可以对其进行数据建模.在机器学习中模型函数一般称为hypothsis.这里假设h为: 我们从简单的单变量线性回归模型开始学习. 1.2 代价函数Cost Function 代价函数也有很多种,下面的是平方误差Squared error function: 其…
线性回归, 最简单的机器学习算法, 当你看完这篇文章, 你就会发现, 线性回归是多么的简单. 首先, 什么是线性回归. 简单的说, 就是在坐标系中有很多点, 线性回归的目的就是找到一条线使得这些点都在这条直线上或者直线的周围, 这就是线性回归(Linear Regression). 是不是有画面感了? 那么我们上图片: 那么接下来, 就让我们来看看具体的线性回归吧 首先, 我们以二维数据为例: 我们有一组数据\(x\)和\(y\), 其中\(x\)是我们的特征, \(y\)就是我们的真实值(也就…
1. 我们应该记住,既成的事实一定有它的道理,如果我们不能理解它,恐怕得从自身找原因.如果你交易股票,请记住,如果预测和市场不一致,错的是预测,而不是市场 https://www.cnblogs.com/meteoric_cry/p/6421772.html https://www.jianshu.com/p/200e5a77a4d4 https://www.jianshu.com/p/6e518dc96d7a 2. cs231n https://blog.csdn.net/dinosoft/a…
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法(取自 百度百科). 例如:现在有一堆散乱的点,想找出一个一元一次方程来让这些点的分布误差最小(就是找出一条最合适的直线来贯穿这些点). 图中红色直线就是我们需要找的线.这条直线的表示为: y=ax+b.那么找出a.b这两个变量最合适的值就叫线性回归. 在图片中,蓝色的点用(xi,yi)来表示.m…
    最近开始看斯坦福的公开课<Machine Learning>,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧. [设想]     最近想要租房,收集了一些信息,得知房价与房间大小有关,那成本函数就可以预测在不同房间大小下租房的价格(PS:价格可能也与该房地理有关,那若把大小和距离市中心距离一并考虑,则属于多参数的线性回归) [数据]     1.准备一个ex1data1.txt,第一列为年龄,第二列为价格     2.导入matla…
   Linear Regression 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本人的一份学习总结,也希望和朋友们进行交流学习. 该书是The Elements of Statistical Learning 的R语言简明版,包含了对算法的简明介绍以及其R实现,最让我感兴趣的是算法的R语言实现. [转载时请注明来源]:http://www.cnblogs.com/runner-l…
这篇博客从一种方式推导了Linear regression 线性回归的概率解释,内容来自Standford公开课machine learning中Andrew老师的讲解. 线性回归的概率解释 在Linear regression中我们人为的定义了,损失函数,然而我们并没有说明为什么我们会选择最小二乘作为我们的损失函数. 下面是一种概率解释:让我们回到一开始的式子来看一看,一开始我们定义线性回归方程,其中是我们的误差项,那么对于我们假设它是独立同分布(IID)的高斯分布,即(假设它为高斯分布,我们…
线性回归(Linear Regression with One / Multiple Variable) 定义符号(Symbol Definition) m = 数据集中训练样本的数量 n = 特征的数量 x = 输入变量 / 特征 y = 输出变量 / 目标变量 (x, y) 表示一个训练样本 \(x^{(i)}\) 训练集中第 i 个样本 \(x_j^{(i)}\) 训练集中第 i 个样本中第 j 个特征 假设函数(Hypothesis Function) 以下所有 \(x_0^{(i)}…
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 理解什么是线性回归 线性回归也被称为最小二乘法回归(Linear Regression, also called Ordinary Least-Squar…
这篇博客针对的AndrewNg在公开课中未讲到的,线性回归梯度下降的学习率进行讨论,并且结合例子讨论梯度下降初值的问题. 线性回归梯度下降中的学习率 上一篇博客中我们推导了线性回归,并且用梯度下降来求解线性回归中的参数.但是我们并没有考虑到学习率的问题. 我们还是沿用之前对于线性回归形象的理解:你站在山顶,环顾四周,寻找一个下山最快的方向走一小步,然后再次环顾四周寻找一个下山最快的方向走一小步,在多次迭代之后就会走到最低点.那么在这个理解中,学习率其实是什么呢?学习率就是你走的步子有多长. 所以…
本系列内容大部分来自Standford公开课machine learning中Andrew老师的讲解,附加自己的一些理解,编程实现和学习笔记. 第一章 Linear regression 1.线性回归 线性回归是一种监督学习的方法. 线性回归的主要想法是给出一系列数据,假设数据的拟合线性表达式为: 如何求得参数θ成为这个方法唯一的问题,为此我们需要定义损失函数: ,其中m表示样本个数,表示第i组样本,所以J表示总的m个样本的损失函数. 这个损失函数的表达式我们一定很熟悉,方差?最小二乘法?没错,…
关于DL,由于我是零经验入门, 事实上我是从最简单的ML开始学起, 所以这个系列我也从ML开始讲起. ===============并行分割线================= 一.线性回归 线性回归主要运用于“预测”类问题: 假设我们有一堆的数据(房间大小,房价).给定一个没见过的房间大小,它的价格应该怎么估计呢? 一般来说,我们可以假定房价h(x)和大小x之间存在一种线性关系.求出最优h(x)后, 对于每一个大小x的房间,我们都可以给出一个估价h(x) 概念:COST FUNCTION(代价…
No.1. 线性回归算法的特点 No.2. 分类问题与回归问题的区别 上图中,左侧为分类问题,右侧为回归问题.左侧图中,横轴和纵轴表示的都是样本的特征,用不同的颜色来作为输出标记,表示不同的种类:左侧图中,只有横轴表示的是样本特征,纵轴用来作为输出标记,这是因为回归问题所预测的是一个连续的数值,无法用离散的几种颜色来表示,它需要占据一个坐标轴的空间.在回归问题中,如果需要考虑两个样本特征,那就必须在三维空间中进行观察.   No.3. 简单线性回归与多元线性回归 样本特征只有一个的线性回归,就称…
线性回归属于回归问题.对于回归问题,解决流程为: 给定数据集中每个样本及其正确答案,选择一个模型函数h(hypothesis,假设),并为h找到适应数据的(未必是全局)最优解,即找出最优解下的h的参数.这里给定的数据集取名叫训练集(Training Set).不能所有数据都拿来训练,要留一部分验证模型好不好使,这点以后说.先列举几个几个典型的模型: 最基本的单变量线性回归: 形如h(x)=theta0+theta1*x1 多变量线性回归: 形如h(x)=theta0+theta1*x1+thet…
2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量   x                 代表特征/输入变量 y                 代表目标变量/输出变量 (x,y)            代表训练集中的实例 (x(i),y(i)  )    代表第 i 个观察实例 h                代表学习算法的解决方案或…
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(features),使问题变成多元线性回归问题. 多元线性回归将通过更多的输入特征,来预测输出.上面有新的Notation(标记)需要掌握. 相比于之前的假设: 我们将多元线性回归的假设修改为: 每一个xi代表一个特征:为了表达方便,令x0=1,可以得到假设的矩阵形式: 其中,x和theta分别表示: 所…
一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(output variable/target variable). (x, y):一个训练样本 (x(i), y(i)):第i个训练样本 m:样本数目 2.机器学习的一般过程 如图,机器学习算法通过学习训练集得出假设函数h(Hypothesis),然后接受输入x,输出y.假设函数h称为模型. 3.线性回归…
面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 y代表输出变量 (x,y)代表训练集中的实例 h代表方案或者假设        h =  a x + b 输入变量输入给h  得到输出结果 因为只有一个特征   所以是单变量线性回归问题 a b就是代价参数    求ab就是建模    ab算完和实际的差距叫建模误差 寻找ab平方和最小点  就是代价…
4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).…