[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 判断sum/2这个价值能不能得到就可以了. 则就是一个01背包模型了. 判断某个价值能否得到. f[j]表示价值j能否得到. f[0] = 1; 写个01背包就好 [代码] #include <bits/stdc++.h> #define ll long long using namespace std; const int M = 100*200; const int N = 100; int f[M+10],n,a[N+1…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如果我们对某一个位置i操作两次的话. 显然结果就和操作一次一样. 因为第一次操作过后1..i这些数字就变成是互质的了. gcd为1.那么除过之后没有影响的. 然后.就是要明白 那个f(x)函数的意义.其实就是问你x质因数分解之后,其中好的质数和坏的质数的差是多少. 也即有多少个好因数,多少个坏因数. (以下的gcd(i)都指的是a[1..i]这些数字的gcd 然后考虑我们在第i个位置进行了一次操作. 显然他会对后面的数字造成影响…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 做这题之前先要知道二叉排序树的一个性质. 就是它的中序遍历的结果就是这个数组升序排序. (且每个节点的左边的节点都是比这个节点的值小的,每个节点的右边的节点都是比这个节点的值大的. 则我们把原数组排序. 然后在这里面找到原来数组的a[1]的位置idx; 则1..idx-1这些数字都是a[1]的左子树. idx+1..n这些数字都是a[1]的右子树. 然后idx的左儿子是什么呢? 肯定就是1..idx-1中在原数组中最早出现的数字…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 题目的图吓人. 找下规律就会发现从内到外是1,6,12,18 即1,16,26,36... 即1+6(1+2+3+...) 等差求和公式. [代码] #include <bits/stdc++.h> #define ll long long using namespace std; ll n; int main() { ios::sync_with_stdio(0),cin.tie(0); #ifdef LOCAL_DEFIN…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 排序,逆序.贪心选较大的就好. [代码] #include <bits/stdc++.h> #define ll long long using namespace std; const int M =1e5; int f[M+10],a[1000+10],n,m; int main() { ios::sync_with_stdio(0),cin.tie(0); #ifdef LOCAL_DEFINE freopen(&quo…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 肯定是放在m-1或者m+1的. (m-1是左边的点都离a最近,而m+1则是右边的点都离他最近. 看看哪个更好就行 [代码] #include <bits/stdc++.h> #define ll long long using namespace std; ll n,m; int main() { ios::sync_with_stdio(0),cin.tie(0); #ifdef LOCAL_DEFINE freopen(&…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 最近公共祖先. (树上倍增 一开始统计出每个子树的节点个数_size[i] 如果x和y相同. 那么直接输出n. 否则求出x和y的最近公共祖先.z (假定y的深度大于x [1]如果z等于x或y中的一个. 那么久就找到x..y的路径(长度设为L)中的中点u. 显然,u和它的其他len-1个子树上的任意一个节点都是可行的(除了那个包含y的子树 设_get(x,step)表示x节点往上走step步到达的节点 则输出_sum[中点]-_s…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 要求把连续的一段li..ri的边全都删掉. 然后求剩下的图的联通数 如果暴力的话 复杂度显然是O(k*m)级别的. 考虑我们把li..ri全都删掉. 接下来要做两件事. 第一是把1..li-1这些边连起来. 并查集1 然后是把ri+1..m这些边连起来. 并查集2 然后把并查集1和并查集2合并在一起求联通分量就好 两个并查集合在一起可以在线性复杂度内完成. 那么花费的时间就在1..li-1和ri+1,,m这两个并查集的获取上.…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把B提取出来就是一个等比数列了. 求和一下会发现是这种形式. \(B*\frac{(A^n-1)}{A-1}+A^n*x\) 则求一下乘法逆元 写个快速幂就好 A-1的逆元就是\((A-1)^{MOD-2}\) 要注意A=1的情况. 然后n最大可能为10^18 所以乘的时候要先对其取模 不然会乘爆 [代码] #include <bits/stdc++.h> #define LL long long using namespac…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 肯定是这样 先放k-1个,然后空1个,然后再放k-1个.然后再空1个.. 以此类推. 然后如果(n/k)*(k-1)+n%k>=m的话 那么答案显然就是m,因为不会出现乘2的情况. 否则. 那么只能让某些位置乘2了. 那么什么地方乘呢? 肯定是越前面越早乘越好. 那么temp=m-((n/k)*(k-1)+n%k)就是需要多乘2的次数. 从左往右放入那n/k个空位置中的前temp个就好 然后会发现前temp个连续的k块的递推式…